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NORTHEASTERN UNIVERSITY

Abstract
Stochastic Optimization for Machine Learning: Stronger Convergence

Guarantees and More Efficient Algorithms

by Thien Hang NGUYEN

As deep neural networks scale to billions or even trillions of parameters, training
costs have become a critical bottleneck. Stochastic optimizers such as Stochastic
Gradient Descent (SGD), AdaGrad, and Adam form the algorithmic backbone of
modern machine learning, making their theoretical understanding essential for effi-
cient scaling and cost management. This thesis advances the foundations of stochas-
tic optimization by establishing stronger convergence guarantees under relaxed as-
sumptions for SGD and adaptive optimizers like AdaGrad. We then leverage these
theoretical insights to design algorithms that are more memory efficient and more
sample efficient for training modern large scale deep neural networks.

Specifically, we develop new general-purpose techniques to derive high proba-
bility convergence rates for a broad class of stochastic optimization algorithms – in-
cluding SGD, Stochastic Mirror Descent (SMD), Accelerated SGD/SMD, AdaGrad-
Norm, and AdaGrad-Coordinate – under sub-Gaussian gradient noise and other re-
laxed conditions like unbounded domains. Additionally, our techniques achieve op-
timal high-probability convergence rates for clipped gradient methods under heavy-
tailed gradient noise.

Building on these theoretical insights, we introduce Subset-Norm (SN) and Subspace-
Momentum (SM), two novel algorithms that compress the adaptive step-size and
momentum states of optimizers like Adam. SN and SM improve both sample ef-
ficiency and memory efficiency in large-scale language model (LLM) training. No-
tably, combining SN and SM achieves Adam’s validation perplexity for pre-training
LLaMA-1B in approximately half the training tokens (6.8B vs. 13.1B) while reducing
the optimizer-state memory footprint by over 80%.

HTTPS://NORTHEASTERN.EDU
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Skip forward two hundred years into the Utopian future, and the scene is totally different.
Hardly one of the things I have imagined will still be there. In that age when there is no
manual labour and everyone is ’educated’, it is hardly likely that Father will still be a rough
man with enlarged hands who likes to sit in shirt-sleeves and says ’Ah wur coomin’ oop
street’. And there won’t be a coal fire in the grate, only some kind of invisible heater. The
furniture will be made of rubber, glass, and steel. If there are still such things as evening
papers there will certainly be no racing news in them, for gambling will be meaningless in a
world where there is no poverty and the horse will have vanished from the face of the earth.
Dogs, too, will have been suppressed on grounds of hygiene. And there won’t be so many
children, either, if the birth-controllers have their way.

– George Orwell
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Chapter 1

Introduction

Everyone in their intellectual life goes through a stage. It can happen in early
graduate school, mid graduate school. It can also happen in later life, which is
bad. It’s not good to have it when you’re an adult. Let me describe this stage of
intellectual development. You read a couple of books and you wake up at 3:00
in the morning and say, “Oh my god, everything is an optimization problem.”
Actually, a lot of books start this way. My answer to that is – you have to go
through this stage, so that’s fine. But get over it quickly, please. Of course,
everything is an optimization problem. What you’ll find out quickly is it doesn’t
mean anything to say that. It says nothing.

—Stephen Boyd

1.1 Stochastic Optimization for Machine Learning: Then and
Now

The central problem in machine learning can be broadly viewed as follows: given
a dataset, design a model capable of accomplishing a “task” based on the infor-
mation contained within the data. For instance, in image classification, the dataset
comprises images of various categories such as cats, dogs, and cars, and the task
involves assigning labels to objects within the images. Similarly, in language mod-
eling, the dataset consists of a corpus of textual data, and the task is to predict the
next word in a given sentence.

More formally, a task is represented via a loss function that quantifies the discrep-
ancy between the model’s predictions and a specified “ground truth.” To achieve
this, a parameterized function fθ is selected. This is known as a model for the task
and its parameters are fitted to the data to minimize the loss. This turns the learning
problem into an optimization problem.

More concretely, let the data D be drawn i.i.d. from some underlying distribution
D over a domainX that we want to estimate over. Given a loss function ℓ : X ×Y →
R that evaluates how well a prediction f (x) ∈ Y aligns with an input x ∈ X , the
goal is to design an algorithm A that outputs parameters θ for fθ that minimizes the
population loss:

L( f ) := Ex∼D[ℓ(x, f (x))].

This process of designing and training machine learning models involves three
deeply interconnected aspects: approximation, optimization, and generalization.
Approximation pertains to choices such as model architecture, selection of loss func-
tions, and the quality and scope of data collection. Optimization involves minimiz-
ing the loss function, often using iterative methods such as gradient descent and its
variants. Generalization addresses the model’s ability to perform well on unseen
data, often involving techniques like regularization, the incorporation of additional
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data, or ensuring stability in training. While this thesis focuses primarily on opti-
mization, the three aspects deeply influence one another.

Remark 1. The optimization formulation above only covers aspects like supervised learning
and unsupervised learning in machine learning but not areas like reinforcement learning,
where the expectation of the objective depends on the optimization parameters themselves i.e.
L( f ) := −Eτ∼ f ,P [R(τ)], where R is some reward given by a trajectory of states and actions
generated by our policy/model f and random environment P.

1.1.1 Machine Learning Pre Scaling Laws

Prior to the advent of LLMs and scaling laws (Kaplan et al., 2020), much of ma-
chine learning was often constrained by limited data and computational resources,
where reliant on supervised learning required more expensive labeled datasets. As
a result, a key aspect during this period was managing the bias-variance tradeoff,
where controlling model capacity via some form of regularization – such as weight-
decay, dropout, early-stopping, etc. – was essential to avoid overfitting. Optimiza-
tion methods typically operated over multiple epochs to maximize performance on
limited datasets.

1.1.2 Machine Learning in the Scaling Laws Era: Big Models and Big Data

Recent advancements have redefined the landscape of machine learning. Advance-
ments in self-supervised pretraining has dramatically expanded access to (relatively)
inexpensive, large-scale datasets, removing many of the limitations imposed by re-
liance on labeled data, and ushering in the era of large-language models (LLMs) and
large-vision models (LVMs) and many other large-X models.

Scaling laws, which suggest consistent improvements by scaling up model sizes
and datasets simultaneously, have diminished concerns over model capacity. In-
creasing model size not only improves performance but also unlocks novel capa-
bilities, fundamentally transforming what is achievable. Hence, this new era has
transformed the algorithmic landscape for machine learning towards this era of ever
larger models and more data. The computational cost of training and deploying
such models has risen significantly, necessitating memory-efficient solutions and al-
gorithms that operate in sublinear time and space. Addressing these challenges will
require the development of innovative algorithms capable of scaling to unprece-
dented levels of complexity.

This thesis primarily focuses on optimization in the context of modern machine
learning1, where big models and big data demand new approaches to efficiency and
scalability.

1.2 Contributions: From Theory to Practice

Modern machine learning with large models and datasets necessitates optimization
methods that provide stronger guarantees due to the high cost of each training run.
Consequently, theoretical interest in the convergence analysis of adaptive methods
extends beyond asymptotic considerations. It now encompasses not only assump-
tions about the objective function (e.g., convexity, smoothness) and stochastic gra-
dients (e.g., noise distribution), but also non-asymptotic dependencies on the total

1Our experiments focus on pre-training and supervised fine-tuning of LLMs.
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TABLE 1.1: Summary of contributions in the Light-Tailed Noise set-
ting. Note that T is the time horizon, δ is the failure probability, d is

the model dimension, and σ is the sub-Gaussian noise parameter.

Setting Method Previous results Our results

Convex (Accelerated) Stochastic Mirror Descent Bounded domain Unconstrained domain
Non-convex Stochastic Gradient Descent O

(
log 1

δ log T
)

O
(

log 1
δ + log T

)
Non-convex AdaGrad-Norm Bounded stochastic grads Unbounded gradients

Non-convex AdaGrad-Coordinate N/A Õ

(
d
√

σ log dT
δ√

T

)

TABLE 1.2: Summary of contributions in the Heavy-Tailed Noise
setting where the gradient noise ξt is heavy-tailed i.e. E[∥ξt∥p

∗ |
x] ≤ σp for p ∈ (1, 2]. The bounds are for the optimal function
gap 1

T ∑T
t=1 f (xt)− f ∗ for convex functions and the average gradient
norm 1

T ∑T
t=1 ∥∇ f (xt)∥2 for non-convex functions.

Assumptions Convex (SMD) Non-convex (SGD)

Previous results Known T Õ
(

T
1−p

p

)
Õ
(

T
1−p

p

)

Our results Known T O
(

T
1−p

p

)
O
(

T
2−2p
3p−2

)
Unknown T (new) Õ

(
T

1−p
p

)
Õ
(

T
2−2p
3p−2

)
Lower bound p ∈ (1, 2] Ω

(
T

1−p
p

)
Ω
(

T
2−2p
3p−2

)

number of iterations, parameter count, and failure probability. Hence, this thesis fo-
cuses on not only obtaining stronger convergence guarantee – i.e. high probability – un-
der weaker assumptions (removing assumptions such as bounded domain, bounded
gradients, bounded noise, etc.) but also utilizes these theoretical insights to design
more efficient algorithms.

1.2.1 Theory

In this thesis, we investigate the convergence properties of stochastic gradient de-
scent (SGD) and adaptive optimization algorithms like AdaGrad under different
noise models. While traditional analyses of stochastic gradient methods often pro-
vide convergence guarantees in expectation, such results typically fail to capture the
behavior of algorithms in single-run scenarios. This is particularly important for
modern applications, where high computational costs and hyperparameter-tuning
demand more reliable performance on individual runs. High-probability analyses,
in contrast, offer a better understanding of optimization dynamics and provide cru-
cial insights for designing more robust algorithms.

Light-tailed noise. In the light-tailed noise setting, we propose a general frame-
work to establish high-probability convergence guarantees for stochastic optimiza-
tion methods under sub-Gaussian gradient noise. A summary of our contributions
in this setting is provided in Table 1.1, where our techniques obtain stronger conver-
gence guarantees under relaxed conditions compared to previous works.
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Heavy-tailed noise. While the light-tailed noise assumption provides a natural
framework for high-probability convergence, modern large-scale models, particu-
larly transformers, often exhibit heavy-tailed gradient noise (Zhang et al., 2020).
In this setting, the gradient noise has unbounded variance, making the analysis
more complex since trading bias for reducing variance is often necessary. Tradi-
tional stochastic gradient descent (SGD) has been proven to fail under heavy-tailed
gradient noise unless clipping is applied. This may explain why adaptive methods,
which inherently normalize gradients by adjusting step sizes according to gradient
norms, often outperform SGD in large-scale transformer models. This shift from
light-tailed to heavy-tailed noise motivates the need for new high-probability con-
vergence guarantees tailored to these more challenging conditions. We apply similar
techniques developed in handling light-tailed gradient noise to tackle heavy-tailed
noise as well, where we obtain optimal high-probability rates for clipped SGD in both
convex and non-convex heavy-tailed noise settings, and the first results for versions
with unknown time-horizon. A summary of our contributions in the heavy-tailed
noise setting is provided in Table 1.2, where we compare our results against previous
works and theoretical lower-bounds.

1.2.2 Practice

While theoretical insights are valuable, practical advancements are required to ad-
dress the challenges posed by large-scale machine learning. As models and datasets
grow in size, algorithms must be robust to varying noise models and scalable in
terms of both computation and memory. Our research focuses on leveraging the-
oretical insights to develop algorithms that address these challenges. For instance,
current adaptive optimizers like Adam, while effective, are memory-intensive and
require storage proportional to twice the model size. By revisiting the theoretical
foundations of adaptive methods, we propose new optimization algorithms that are
not only faster but also significantly more memory-efficient. These contributions
have the potential to reduce resource costs and enable training of even larger mod-
els in resource-constrained environments.

More specifically, we introduce two memory-efficient optimization algorithms
for large-scale language model training: Subset-Norm (SN) for adaptive step-size
memory reduction and Subspace-Momentum (SM) for momentum compression.
While existing approaches trade performance for memory savings, our theoretically-
grounded methods achieve both a reduced memory footprint and improved con-
vergence. These methods are direct generalization of existing methods. Concretely,
Subset-Norm adaptive step size generalizes AdaGrad-Norm and AdaGrad-Coordinate,
and Subspace-Momentum (SM) generalizes SGD with Momentum. These methods
build on top of our theoretical analysis and strong empirical results demonstrate
their practical effectiveness in real-world large scale tasks.

1.3 Dissertation Overview

This thesis investigates the challenges and advancements in stochastic optimization
for machine learning, focusing on both theoretical and practical contributions.

Chapter 2 establishes the theoretical framework of thesis. It formalizes the prob-
lem of stochastic optimization for machine learning and articulates the assumptions
required for theoretical analysis.
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Part I focuses on theoretical advancements, presenting key results and theorems
under various settings. It highlights novel techniques for relaxing assumptions in
prior work, offering insights that improve the rigor and applicability of existing the-
ories. There, Chapter 3 provides an overview and literature review of the area, as
well as provide important context for the contributions of our technical framework
and results. Then, Chapter 4 presents high-probability convergence results under re-
laxed assumptions (unbounded domain and light-tailed gradient noise) for (Accel-
erated) Stochastic Mirror Descent on convex objectives and SGD, AdaGrad-Norm,
and AdaGrad on non-convex objectives. Chapter 5 transitions to the more challeng-
ing setting of heavy-tailed noise. There, we provide optimal convergence rates for
clipped methods in both convex and non-convex regimes. These theoretical insights
serve as foundations for the development of principled practical algorithms.

Part II transitions to practical advancements, where Chapter 6 introduces the
issues of existing optimizers and the problems we are trying to solve. Then we in-
troduce our two novel algorithms, Subset Norm in Chapter 7 and Subspace Momen-
tum in Chapter 8, for reducing memory while maintaining strong theoretical guar-
antees under relaxed assumptions. Then we demonstrate the practical effectiveness
of our methods through a series of extensive empirical validations on a wide range
of real-world LLMs training tasks in Chapter 9. The results showcase the algorithms
speedup, reduced memory requirements, and robustness to gradient noise, validat-
ing the proposed theoretical benefits.
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Chapter 2

Problem Statement and Notations

2.1 Problem Statement

We consider the problem minx∈X f (x) where f : Rd → R is the objective function
and X is the domain of the problem. In the convex case, we consider the general
setting where f is potentially not strongly convex and the domain X is convex but
not necessarily compact. The distance between solutions in X is measured by a
general norm ∥·∥. Let ∥·∥∗ denote the dual norm of ∥·∥. In the non-convex case, we
consider the setting where X is Rd and ∥·∥ is the ℓ2 norm.

2.1.1 Goals

In the convex case, the goal is to find iterates xt ∈ X that approaches the global
optimal solution i.e. f (xt) → min f (x) as t → ∞. In the non-convex case, finding a
global solution is NP-hard. Hence, we find solutions that approach an approximate
stationary point i.e. ∥∇ f (xt)∥ → 0 as t→ ∞.

We will present our probabilistic results in terms of the number of iterations T
required in order for the optimal gap f (xT)− f ∗ where f ∗ := infx∈X f (x) or gradient
norm ∥∇ f (xT)∥ to be within some small error range ϵ ∈ (0, 1) with probability at
least 1− δ for some (small) failure probability δ ∈ (0, 1). As alluded to in Table 1.2,
our results will be presented in the form of an average case result (as is common
in stochastic optimization results): 1

T ∑T
t=1 f (xt) − f ∗ for convex functions and the

average gradient norm 1
T ∑T

t=1 ∥∇ f (xt)∥2 for non-convex functions. The next Section
expands on how one can interpret these results in more practical terms.

2.1.2 Interpreting Average Results

In stochastic optimization, average-case convergence results—such as 1
T ∑T

t=1 f (xt)−
f ∗ for convex objectives and 1

T ∑T
t=1 ∥∇ f (xt)∥2 for non-convex objectives—guide

practical algorithm design. For convex functions, if 1
T ∑T

t=1 f (xt) − f ∗ ≤ ϵ, then
by definition of the average, there exists some t such that f (xt) − f ∗ ≤ ϵ (since
mint( f (xt)− f ∗) ≤ 1

T ∑T
t=1 f (xt)− f ∗), justifying the selection of the best iterate via

validation (e.g., on a holdout set), while the average iterate x̄T = 1
T ∑T

t=1 xt often con-
verges to the optimum due to Jensen’s inequality: f (x̄T) ≤ 1

T ∑T
t=1 f (xt) ≤ f ∗ + ϵ.

For non-convex functions, a small average gradient norm 1
T ∑T

t=1 ∥∇ f (xt)∥2 ≤ ϵ
implies mint ∥∇ f (xt)∥2 ≤ ϵ (same averaging argument), enabling selection of the
best iterate with a small gradient via validation, though averaging iterates is less
common due to non-convexity. These strategies transform theoretical averages into
actionable solutions for practical algorithms.
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2.2 Notations

We let vi denote the i-th coordinate of a vector v ∈ Rd. If a vector xt is already in-
dexed as part of a sequence of vectors (where xt denotes the t-th update) then we use
xt,i to denote xt’s i-th coordinate and xt,Ψ ∈ Rk to denote the indexing with respect
to an ordered subset Ψ ⊆ [d] of size k where (xt,Ψ)k = xt,Ψ(k) with Ψ(k) denoting the

k-th element of Ψ. For gradients, we let ∇i f (x) := ∂ f
∂xi

denote the partial derivative

with respect to the i-th coordinate. Similarly, for stochastic gradients ∇̂ f (x), we let
∇̂i f (x) denotes its i-th coordinate. If a, b ∈ Rd, then ab and a/b denotes coordinate-
wise multiplication and division, respectively i.e. (ab)i = aibi and (a/b)i = ai/bi.

2.3 Assumptions

We use the following standard assumptions:

(1) Existence of a minimizer: In the convex setting, we assume that there exists x∗ =
arg minx∈X f (x).

(1’) Finite lowerbound: In the nonconvex setting, we assume that f admits a finite
lower bound infx∈X f (x) := f∗ > −∞.

(2) Unbiased estimator: We assume to have access to a history independent, non-
biased gradient estimator ∇̂ f (x) for any x ∈ X , that is E

[
∇̂ f (x) | x

]
= ∇ f (x).

Light-tailed noise i.e. sub-Gaussian noise. There are several equivalent defini-
tions of sub-Gaussian random variables up to an absolute constant scaling (see, e.g.,
Proposition 2.5.2 in (Vershynin, 2018)). For convenience, we use the following prop-
erty as the definition.

Definition 2.3.1. A random variable X is σ-sub-Gaussian if

E
[
exp

(
λ2X2)] ≤ exp

(
λ2σ2) for all λ such that |λ| ≤ 1

σ
.

Coordinate-wise sub-gaussian noise. If we denote the stochastic gradient noise as
ξt := ∇̂ f (xt)−∇ f (xt) and ξt,i as the i-th coordinate of ξt, then we assume the noise
is per-coordinate subgaussian i.e. there exists σi > 0 for i ∈ [d] such that ξt satisfies

E
[
exp

(
λ2ξ2

t,i
)]
≤ exp

(
λ2σ2

i
)

, ∀ |λ| ≤ 1
σi

, ∀i ∈ [d] . (2.1)

Note that ∥ξt∥ being σ-subgaussian implies that each ξt,i is also σ-subgaussian, so
coordinate-wise sub-gaussian is more general than standard scalar sub-gaussian
noise assumption. Furthermore, when ∥·∥ is used without explicitly specifying the
norm, we assume it is the ℓ2 norm ∥·∥2. We also use 0-indexing convention i.e.
[n] := {0, 1, . . . , n− 1} for integer n ∈N.

Heavy-tailed noise. There exists σ > 0 such that for some 1 < p ≤ 2, E[∥∇̂ f (x)−
∇ f (x)∥p

∗ | x] ≤ σp.
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Part I

Theory
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Chapter 3

Introduction

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you
are. If it doesn’t agree with experiment, it’s wrong.

– Richard Feynman

3.1 Introduction

Stochastic optimization is a fundamental area with extensive applications in many
domains, ranging from machine learning to algorithm design and beyond. The de-
sign and analysis of iterative methods for stochastic optimization has been the fo-
cus of a long line of work, leading to a rich understanding of the convergence of
paradigmatic iterative methods such as stochastic gradient descent, mirror descent,
and accelerated methods for both convex and non-convex optimization. However,
most existing works focus on establishing convergence guarantees that hold only in
expectation. Although meaningful, these results do not fully capture the convergence
behaviors of the algorithms on a small number of runs, as typical in modern ML
applications where there are significant costs associated with performing multiple
runs of the algorithm (Harvey et al., 2019; Madden et al., 2020; Davis et al., 2021).

Compared to the guarantees that hold in expectation, high probability guaran-
tees are harder to obtain and hold in more limited settings. They often require
stronger assumptions on the problem settings and the noise distribution. Existing
high-probability results focus on the setting where the magnitude of the stochastic
noise follows a light-tail (sub-Gaussian) distribution (Juditsky et al., 2011; Lan, 2012;
Lan, 2020; Li and Orabona, 2020; Madden et al., 2020; Kavis et al., 2021). Recent
works also study the more challenging heavy-tail setting, notably under a bounded
variance (Nazin et al., 2019; Gorbunov et al., 2020; Cutkosky and Mehta, 2021) or
bounded p-moment assumption (Cutkosky and Mehta, 2021) on the norm of the
stochastic noise. Both settings are highly relevant in practice. For instance, Zhang et
al. (2020) empirically studied the noise distribution for two common tasks, training
a ResNet model for computer vision and a BERT transformer model for natural lan-
guage processing. The authors observe that the noise distribution in the former task
is well-approximated by a sub-Gaussian distribution, while the latter task appears
to be heavy-tailed.

3.1.1 Challenges in the Light-Tailed Setting

Despite these progress, the convergence of cornerstone methods is not fully under-
stood even in the more structured light-tailed noise setting. Specifically, the existing
works for both convex and non-convex optimization rely on strong assumptions on
the optimization domain and the gradients:
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The problem domain is restricted to either the unconstrained domain or a constrained
domain with bounded Bregman diameter. The convergence guarantees established de-
pend on the Bregman diameter of the domain instead of the initial distance to the
optimum. Even for compact domains, since the diameter can be much larger than
the initial distance, these guarantees are pessimistic and diminish the benefits of
good initializations. Thus an important direction remains to establish high proba-
bility guarantees for general optimization that scale only with the initial Bregman
distance.

The gradients or stochastic gradients are assumed to be bounded even in the smooth
setting. These additional assumptions are very restrictive and they significantly limit
the applicability of the algorithm, e.g., they do not apply to important settings such
as quadratic optimization. Moreover, the stochastic gradient assumption is more
restrictive than other commonly studied assumptions, such as the gradients and the
stochastic noise being bounded almost surely.

The above assumptions are not merely an artifact of the analysis, and they stem
from important considerations and technical challenges. The high probability con-
vergence guarantees are established via martingale concentration inequalities that
impose necessary conditions on how much the martingale sequence can change in
each step. However, the natural martingale sequences that arise in optimization de-
pend on quantities such as the distance between the iterates and the optimum and
the stochastic gradients, which are not a priori bounded. The aforementioned as-
sumptions ensure that the concentration inequalities can be readily applied due to
the relevant stochastic terms being all bounded almost surely. These difficulties are
even more pronounced for adaptive algorithms in the AdaGrad family that set the
step sizes based on the stochastic gradients. The adaptive step sizes introduce corre-
lations between the step sizes and the update directions, and a crucial component is
the analysis of the evolution of the adaptive step sizes and the cumulative stochastic
noise. If the gradients are bounded, both of these challenges can be overcome by
paying error terms proportional to the lengths of the gradients and stochastic gradi-
ents. Removing the bounded gradient assumptions requires new technical insights
and tools.

In addition to requiring stronger assumptions, due to the technical challenges
involved, several of the prior works are only able to establish convergence guar-
antees that are slower than the ideal sub-Gaussian rates. For example, a common
approach is to control the relevant stochastic quantities across all T iterations of the
algorithm via repeated applications of the concentration inequalities, leading to con-
vergence rates that have additional factors that are poly-logarithmic in T. Addition-
ally, achieving noise-adaptive rates that improve towards the deterministic rate as
the amount of noise decreases is very challenging with existing techniques.

3.1.2 Challenges in the Heavy-Tailed Setting

In the heavy-tailed setting, recent works (Cutkosky and Mehta, 2021; Sadiev et al.,
2023; Liu et al., 2023d) show that variants of Clipped-SGD in fact converge with high
probability. This is a pleasing result, extending the earlier work by (Gorbunov et al.,
2020) for p = 2. However, there are several shortcomings of these results when com-
pared with the corresponding bounds in the light-tailed setting. First, the clipped
algorithm uses a fixed step size and a fixed clipping parameter depending on the
number of iterations, which precludes results with unknown time horizons. Second,
the convergence guarantees are worse than the light-tailed bounds by a log T factor,
even for fixed step sizes and clipping parameters.
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3.2 Contributions

In the light-tailed noise setting (Liu et al., 2023c), we develop a general frame-
work to establish high-probability convergence guarantees for stochastic optimiza-
tion methods under sub-Gaussian gradient noise. For convex objectives, our results
extend to stochastic mirror descent (SMD) and stochastic accelerated mirror descent,
achieving rates that depend only on the Bregman distance between the initial point
and the optimum (Juditsky et al., 2011; Lan, 2012; Lan, 2020). In the non-convex set-
ting, we improve the time horizon and success probability dependencies for stochas-
tic gradient descent (SGD) compared to prior works (Madden et al., 2020; Li and
Orabona, 2020), and extend high-probability guarantees to AdaGrad-Norm (Ward
et al., 2019), eliminating restrictive gradient assumptions made in earlier studies
(Kavis et al., 2021). Furthermore, our analysis provides the first high-probability
convergence results for standard AdaGrad (Duchi et al., 2011), broadening its theo-
retical guarantees.

In the heavy-tailed noise setting (Nguyen et al., 2023a), we analyze clipped gra-
dient methods and demonstrate time-optimal high-probability convergence rates
across convex and non-convex objectives, addressing key limitations in prior works.
For convex optimization, we establish rates for clipped-SMD and clipped acceler-
ated SMD that match lower bounds (Raginsky and Rakhlin, 2009; Vural et al., 2022),
even for unbounded domains. In the non-convex setting, clipped-SGD achieves the
optimal rate (Zhang et al., 2020), complementing in-expectation results. Notably,
our approach removes dependency on the time horizon T and allows for unknown
problem parameters such as the noise parameter σ, failure probability δ, and ini-
tial distance to the optimum, which were restrictive in prior analyses (Freedman,
1975; Dzhaparidze and Van Zanten, 2001). These results extend clipped gradient
techniques to stochastic mirror descent and stochastic accelerated mirror descent,
accommodating arbitrary norms and domains.

3.3 Main Techniques

Compared to prior works that rely on black-box applications of martingale con-
centration inequalities such as Freedman’s inequality and its extensions (Freedman,
1975; Harvey et al., 2019; Madden et al., 2020), in this work we introduce a “white-
box” concentration argument that leverages existing convergence analyses for first-
order methods. The high-level approach is to define a novel martingale sequence
derived from the standard convergence analyses and analyze its moment generat-
ing function from first principles. By leveraging the structure of the optimization
problem, we are able to overcome a key difficulty associated with black-box applica-
tions of martingale concentration results: these results pose necessary conditions on
how much the martingale sequence can change, which do not a priori hold for the
natural martingales that arise in optimization. By seamlessly combining the opti-
mization and probability toolkits, we obtain a flexible analysis template that allows
us to handle general optimization domains with very large or even unbounded di-
ameter, general objectives that are not globally Lipschitz, and adaptive step sizes.

Our technique is inspired by classical works in concentration inequalities, specif-
ically a type of martingale inequalities where the variance of the martingale differ-
ence is bounded by a linear function of the previous value. This technique is first
applied by Harvey et al. (2019) to show high probability convergence for SGD in the
strongly convex setting. Our proof is inspired by the proof of Theorem 7.3 by Chung
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and Lu (2006). In each time step with iterate xt, let ξt := ∇̂ f (xt)−∇ f (xt) be the
stochastic error in our gradient estimate. Classical proofs of convergence evolve
around analyzing the sum of ⟨ξt, x∗ − xt⟩, which can be viewed as a martingale se-
quence. Assuming a bounded domain, the concentration of the sum can be shown
via classical martingale inequalities. The key new insight is that instead of analyz-
ing this sum, we analyze a related sum where the coefficients decrease over time to
account for the fact that we have a looser grip on the distance to the optimal solution
as time increases. Nonetheless, the coefficients are kept within a constant factor of
each others and the same asymptotic convergence is attained with high probability.

3.4 Related Works

Convex optimization: Nemirovski et al. (2009) and Lan (2012) establish high prob-
ability bounds for stochastic mirror descent and accelerated stochastic mirror de-
scent with sub-Gaussian noise. The rates shown in these works match the best rates
known in expectation, but they depend on the Bregman diameter maxx,y∈X Dψ (x, y)
of the domain, which can be very large or even unbounded. Our work complements
the analysis with a novel concentration argument that allows us to establish conver-
gence with respect to the distance Dψ (x∗, x1) from the initial point to the optimum.
Our analysis applies to the general setting considered in (Lan, 2020) and we use the
same sub-Gaussian assumption on the noise.

Nazin et al. (2019) and Gorbunov et al. (2020) consider the more general set-
ting of bounded variance noise. However, their problem settings are more restricted
than ours. Specifically, Nazin et al. (2019) analyze stochastic mirror descent only in
the setting where the optimization domain has bounded Bregman diameter. Gor-
bunov et al. (2020) analyze modifications of stochastic gradient descent and acceler-
ated stochastic gradient descent, but only for unconstrained optimization with the ℓ2
setup. In contrast, our work addresses the sub-Gaussian noise setting but it applies
to general optimization, and we analyze the classical stochastic mirror descent and
accelerated mirror descent without any modifications and with general Bregman
distances and optimization domains.

The algorithm of Davis et al. (2021) is restricted to well-conditioned objectives
that are both smooth and strongly convex, and do not apply to general convex opti-
mization. Additionally, compared to classical methods such as SGD and stochastic
mirror descent, the proposed algorithm solves an auxiliary optimization problem
in each iteration and is thus more computationally expensive. The high-probability
convergence of SGD is studied in the works (Kakade and Tewari, 2008; Rakhlin et
al., 2011; Hazan and Kale, 2014; Harvey et al., 2019; Dvurechensky and Gasnikov,
2016). These works either assume that the function is strongly convex or the do-
main has bounded diameter. In contrast, our work applies to non-strongly convex
optimization with a general domain.

Non-convex optimization: Li and Orabona (2020) demonstrate a high probabil-
ity bound for an SGD algorithm with momentum while Madden et al. (2020) and
Li and Liu (2022) show for the vanilla SGD and generalize to the family of sub-
Weibull noise. However, the existing bounds are not optimal, which we improve
in our work, using a very different approach. Convergence in high probability of
algorithms with adaptive step size for non-convex problems has also been studied,
for example, by Li and Orabona (2020) and Kavis et al. (2021). We note that the al-
gorithm of Li and Orabona (2020) is not fully adaptive due to the dependence of the
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initial step size on the problem parameters, whereas in Kavis et al. (2021) the gradi-
ents or stochastic gradients are required to be uniformly bounded almost surely. By
contrast, using new techniques, we are able to establish convergence in high prob-
ability of the vanilla version of AdaGrad-Norm (Ward et al., 2019; Faw et al., 2022)
without any of these additional assumptions. A key distinction from prior work
is the analysis does not involve the division by the step size. This allows us to di-
rectly extend the analysis to the general AdaGrad Duchi et al. (2011), which is not
possible previously. We provide a more detailed comparison with prior work in the
subsequent sections.

High probability convergence for noises with bounded variance and heavy
tails. The design of new gradient algorithms and their analysis in the presence of
heavy-tailed noises has drawn significant recent interest. Starting from the work
(Pascanu et al., 2012) which propose Clipped-SGD to handle exploding gradients
in recurrent neural networks, the recent works (Simsekli et al., 2019; Şimşekli et al.,
2019; Zhang et al., 2020; Gurbuzbalaban et al., 2021) give new motivation for clipped
methods in the context of convolutional networks and attention deep networks that
attempts to explain the dominance of adaptive methods over SGD in practical mod-
ern scenarios.

While the convergence in expectation of vanilla SGD has been extensively stud-
ied (Ghadimi and Lan, 2013; Nemirovski et al., 2009; Khaled and Richtárik, 2020; Liu
et al., 2023c), only recently has the convergence of Clipped-SGD with heavy tailed
noises been closely examined. There, (Zhang et al., 2020) first show the convergence
in expectation of Clipped-SGD for nonconvex functions and provide a matching
lower bound. In the convex regime, several works with different clipping strategies
for the case of p = 2 have shown high probability convergence for smooth prob-
lems with bounded domain (Nazin et al., 2019; Parletta et al., 2022), smooth uncon-
strained problems (Gorbunov et al., 2020), and non-smooth problems (Gorbunov et
al., 2021). A variant of Clipped-SGD that utilizes momentum (Cutkosky and Mehta,
2021) has also been shown to converge with high probability for bounded pth mo-
ments gradient noise. However, the analysis in (Cutkosky and Mehta, 2021) requires
a strong assumption which implies that the true gradients are bounded, a restrictive
assumption that excludes objectives like quadratic functions.

More recently, (Sadiev et al., 2023; Liu et al., 2023d; Zhang and Cutkosky, 2022)
give nearly-optimal convergence rates for several Clipped-SGD variants. These works
follow the recipe of using Freedman-type inequalities (Freedman, 1975; Dzhaparidze
and Van Zanten, 2001) as a blackbox and bound the iterates inductively for all itera-
tions, which incur an additional log T dependency in the final convergence rate. We
show in our work that existing convergence rates can be tightened up and improved.
Tight lower bounds for the optimal convergence rate have been shown by (Ragin-
sky and Rakhlin, 2009; Vural et al., 2022) for convex objectives and by (Zhang et al.,
2020) for nonconvex settings. In both cases, our paper provides optimal convergence
guarantees.

In a related but different line of work, (Wang et al., 2021) show that vanilla SGD
can converge with heavy tailed noise for a special type of strongly convex functions,
and (Vural et al., 2022) show that stochastic mirror descent converges in expectation
for a special choice of mirror maps, although only for strongly convex objectives
with bounded domains.
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Chapter 4

Light-Tailed Noise: (Accelerated)
SMD, SGD, and AdaGrad

4.1 Convex Case: Stochastic Mirror Descent (SMD) and Ac-
celerated SMD

In this section, we analyze the Stochastic Mirror Descent algorithm (Algorithm 1)
and Accelerated Stochastic Mirror Descent algorithm (Algorithm 2) for convex opti-
mization. We define the Bregman divergence Dψ (x, y) = ψ (x)−ψ (y)−⟨∇ψ (y) , x− y⟩
where ψ : Rd → R is an 1-strongly convex mirror map with respect to ∥·∥ on X . We
remark that the domain of ψ is defined as Rd for simplicity, though which is not
necessary.

4.1.1 Analysis of Stochastic Mirror Descent

Algorithm 1 Stochastic Mirror Descent Algorithm
Parameters: initial point x1 ∈ X , step sizes {ηt}, strongly convex mirror map ψ
for t = 1 to T:

xt+1 = arg minx∈X
{

ηt

〈
∇̂ f (xt) , x

〉
+ Dψ (x, xt)

}
return 1

T ∑T
t=1 xt

The end result of this section is the convergence guarantee of Algorithm 1 for
constant step sizes (when the time horizon T is known) and time-varying step sizes
(when T is unknown) presented in Theorem 4.1.1. However, we will emphasize
more on presenting the core idea of our approach, which will serve as the basis for
the analysis in subsequent sections. For simplicity, here we consider the non-smooth
setting, and assume that f is G-Lipschitz continuous, i.e., we have ∥∇ f (x)∥∗ ≤ G for
all x ∈ X . However, this is not necessary. The analysis for the smooth setting follows
via a simple modification to the analysis presented here as well as the analysis for
the accelerated setting given in the next section.

Theorem 4.1.1. Assume f is G-Lipschitz continuous, a minimizer x∗ exists (assumption 1),
access to unbiased gradient estimators (assumption 2), and σ-sub-gaussian gradient noise.
Then, with probability at least 1− δ, the iterate sequence (xt)t≥1 output by Algorithm 1
satisfies
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(1) Setting ηt =

√
Dψ(x∗,x1)

6(G2+σ2(1+log( 1
δ )))T

, then Dψ (x∗, xT+1) ≤ 4Dψ (x∗, x1), and

1
T

T

∑
t=1

( f (xt)− f (x∗)) ≤ 4
√

6√
T

√
Dψ (x∗, x1)

(
G2 + σ2

(
1 + log

(
1
δ

)))
.

(2) Setting ηt =

√
Dψ(x∗,x1)

6(G2+σ2(1+log( 1
δ )))t

, then Dψ (x∗, xT+1) ≤ 2(2+ log T)Dψ (x∗, x1),

and

1
T

T

∑
t=1

( f (xt)− f (x∗)) ≤ 2
√

6√
T
(2 + log T)

√
Dψ (x∗, x1)

(
G2 + σ2

(
1 + log

(
1
δ

)))
.

We define ξt := ∇̂ f (xt)−∇ f (xt) and let Ft = σ (ξ1, . . . , ξt−1) denote the nat-
ural filtration. Note that xt is Ft-measurable. The starting point of our analysis is
the following inequality that follows from the standard stochastic mirror descent
analysis (see, e.g., Lan (2020)). We include the proof in Section 4.4 for completeness.

Lemma 4.1.2. Lan (2020) For every iteration t, we have

At := ηt ( f (xt)− f (x∗))− η2
t G2 + Dψ (x∗, xt+1)−Dψ (x∗, xt)

≤ ηt ⟨ξt, x∗ − xt⟩+ η2
t ∥ξt∥2

∗ .

We now turn our attention to our main concentration argument. Towards our
goal of obtaining a high-probability convergence rate, we analyze the moment gen-
erating function for a random variable that is closely related to the left-hand side of
the inequality above. We let {wt} be a sequence where wt ≥ 0 for all t. We define

Zt = wt At − vtDψ (x∗, xt) , ∀ 1 ≤ t ≤ T

where vt = 6σ2η2
t w2

t

and St =
T

∑
i=t

Zi, ∀ 1 ≤ t ≤ T + 1

Before proceeding with the analysis, we provide intuition for our approach. If we
consider S1, we see that it combines the gains in function value gaps with weights
given by the sequence {wt} and the losses given by the Bregman divergence terms
Dψ (x∗, xt) with coefficients vt chosen based on the step size ηt and wt. The intuition
here is that we want to transfer the error from the stochastic error terms on the RHS
of Lemma 4.1.2 into the loss term vtDψ (x∗, xt) then leverage the progression of the
Bregman divergence Dψ (x∗, xt+1)−Dψ (x∗, xt) to absorb this loss. For the first step,
we can do that by setting the coefficient vt to equalize coefficient of divergence term
that will appear from the RHS of Lemma 4.1.2. For the second step, we can aim at
making all the divergence terms telescope, by selecting vt and wt such that wt + vt ≤
wt−1 to have a telescoping sum of the terms wtDψ (x∗, xt+1) − wt−1Dψ (x∗, xt). In
the end we will obtain a bound for the function value gaps in terms of only the
deterministic quantities, namely ηt, wt, G and the initial distance. In Theorem 4.1.3,
we upper bound the moment generating function of S1 and derive a set of conditions
for the weights {wt} that allow us to absorb the stochastic errors. In Corollary 4.1.4,
we show how to choose the weights {wt} and obtain a convergence rate that matches
the standard rates that hold in expectation.
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We now give our main concentration argument that bounds the moment gener-
ating function of St inspired by the proof of Theorem 7.3 in Chung and Lu (2006).

Theorem 4.1.3. Suppose that wtη
2
t ≤ 1

4σ2 for every 1 ≤ t ≤ T. For every 1 ≤ t ≤ T + 1,
we have

E [exp (St) | Ft] ≤ exp

(
3σ2

T

∑
i=t

wiη
2
i

)
.

Proof. We proceed by induction on t. Consider the base case t = T + 1. We have the
inequality holds true trivially. Next, we consider 1 ≤ t ≤ T. We have

E [exp (St) | Ft] = E [exp (Zt + St+1) | Ft]

= E [E [exp (Zt + St+1) | Ft+1] | Ft] . (4.1)

We now analyze the inner expectation. Conditioned on Ft+1, Zt is fixed. Using the
inductive hypothesis, we obtain

E [exp (Zt + St+1) | Ft+1] ≤ exp (Zt) exp

(
3σ2

T

∑
i=t+1

wiη
2
i

)
. (4.2)

Plugging into (4.1), we obtain

E [exp (St) | Ft] ≤ E [exp (Zt) | Ft] exp

(
3σ2

T

∑
i=t+1

wiη
2
i

)
. (4.3)

By Lemma 4.1.2

exp (Zt)

= exp
(

wt
(
ηt ( f (xt)− f (x∗))− η2

t G2 + Dψ (x∗, xt+1)−Dψ (x∗, xt)
)
− vtDψ (x∗, xt)

)
≤ exp

(
wtηt ⟨ξt, x∗ − xt⟩+ wtη

2
t ∥ξt∥2

∗

)
exp

(
−vtDψ (x∗, xt)

)
Next, we analyze the first term in the last line of the above inequality in expectation.
Since E [⟨ξt, x∗ − xt⟩ | Ft] = 0 we can use Lemma 4.3.2 to obtain

E
[
exp

(
wtηt ⟨ξt, x∗ − xt⟩+ wtη

2
t ∥ξt∥2

∗

)
| Ft

]
≤ exp

(
3σ2

(
w2

t η2
t ∥x∗ − xt∥2 + wtη

2
t

))
≤ exp

(
3σ2 (2w2

t η2
t Dψ (x∗, xt) + wtη

2
t
))

(4.4)

where in the last line we used that Dψ (x∗, xt) ≥ 1
2 ∥x∗ − xt∥2 from the strong con-

vexity of ψ.
Plugging back into (4.3) and using that vt = 6σ2η2

t w2
t , we obtain the desired

inequality

E [exp (St) | Ft] ≤ exp

((
6σ2η2

t w2
t − vt

)
Dψ (x∗, xt) + 3σ2

T

∑
i=t

wiη
2
i

)

= exp

(
3σ2

T

∑
i=t

wiη
2
i

)
.
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Using Theorem 4.1.3 and Markov’s inequality, we obtain the following conver-
gence guarantee.

Corollary 4.1.4. Suppose the sequence {wt} satisfies the conditions of Theorem 4.1.3 and
that wt + 6σ2η2

t w2
t ≤ wt−1. For any δ > 0, with probability at least 1− δ:

T

∑
t=1

wtηt ( f (xt)− f (x∗)) + wTDψ (x∗, xT+1)

≤ w0Dψ (x∗, x1) +
(
G2 + 3σ2) T

∑
t=1

wtη
2
t + log

(
1
δ

)
With the above result in hand, we complete the convergence analysis by showing

how to define the sequence {wt} with the desired properties. For the stochastic
Mirror Descent algorithm with fixed step sizes ηt = η√

T
, we set wT = 1

12σ2η2 and

wt−1 = wt +
6
T σ2η2w2

t for all 1 ≤ t ≤ T. For Stochastic Mirror Descent algorithm
with time-varying step sizes ηt = η√

t
, we set wT = 1

12σ2η2(∑T
t=1

1
t )

and wt−1 = wt +

6σ2η2
t w2

t for all 1 ≤ t ≤ T. In Section 4.4, we show that these choices have the give
us the results in Theorem 4.1.1.

4.1.2 Analysis of Accelerated Stochastic Mirror Descent

Algorithm 2 Accelerated Stochastic Mirror Descent Algorithm Lan (2020).
Parameters: initial point x0 = y0 = z0 ∈ X , step size η, strongly convex mirror map
ψ
for t = 1 to T:

Set αt =
2

t+1
xt = (1− αt) yt−1 + αtzt−1

zt = arg minx∈X
(

ηt

〈
∇̂ f (xt), x

〉
+ Dψ (x, zt−1)

)
yt = (1− αt) yt−1 + αtzt

return yT

In this section, we extend the analysis detailed in the previous section to analyze
the Accelerated Stochastic Mirror Descent Algorithm (Algorithm (2)). We assume
that f satisfies the following condition: for all x, y ∈ X

f (y) ≤ f (x) + ⟨∇ f (x) , y− x⟩+ G ∥y− x∥+ L
2
∥y− x∥2 (4.5)

L-smooth functions, G-Lipschitz functions, and their sums all satisfy the above
condition. The full convergence guarantees are given in Theorem 4.4.3. We will only
highlight the application of the previous analysis in this case. As before, we define
ξt := ∇̂ f (xt)−∇ f (xt).

We also start with the inequalities shown in the standard analysis, e.g, from Lan
(2020) (proof in Section 4.4).
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Lemma 4.1.5. Lan (2020) For every iteration t, we have

Bt :=
ηt

αt
( f (yt)− f (x∗))− ηt (1− αt)

αt
( f (yt−1)− f (x∗))

− η2
t

1− Lαtηt
G2 + Dψ (x∗, zt)−Dψ (x∗, zt−1)

≤ ηt ⟨ξt, x∗ − zt−1⟩+
η2

t
1− Lαtηt

∥ξt∥2
∗ .

We now turn our attention to our main concentration argument. Similar to the
previous section, we define

Zt = wtBt − vtDψ (x∗, zt−1) , ∀ 1 ≤ t ≤ T

where vt = 6σ2w2
t η2

t

and St =
T

∑
i=t

Zi, ∀ 1 ≤ t ≤ T + 1

Notice that here we are following the exact same step as before. By transferring the
error terms in the RHS of Lemma 4.1.5 into the Bregman divergence terms Dψ (x∗, zt−1),
we can absorb them by setting the coefficients appropriately. In the same manner,
we can show the following theorem.

Theorem 4.1.6. Suppose that wtη
2
t

1−Lαtηt
≤ 1

4σ2 for every 0 ≤ t ≤ T. For every 1 ≤ t ≤ T + 1,
we have

E [exp (St) | Ft] ≤ exp

(
3σ2

T

∑
i=t

wi
η2

i
1− Lαiηi

)
.

Corollary 4.1.7. Suppose the sequence {wt} satisfies the conditions of Theorem 4.1.6. For
any δ > 0, the following event holds with probability at least 1− δ:

T

∑
t=1

wt

(
ηt

αt
( f (yt)− f (x∗))− ηt (1− αt)

αt
( f (yt−1)− f (x∗))

)
+ wTDψ (x∗, zT)

≤w0Dψ (x∗, z0) +
(
G2 + 3σ2) T

∑
t=1

wt
η2

t
1− Lαtηt

+ log
(

1
δ

)
.

With the above result in hand, we can complete the convergence analysis by
showing how to define the sequence {wt} with the desired properties. Theorem
4.4.3 can be obtained from corollaries 4.4.4 and 4.4.5 provided in Section 4.4, for
constant and time-varying step sizes.

4.2 Non-convex Case: Stochastic Gradient Descent and Ada-
Grad

In this section, we consider non-convex objectives and analyze the Stochastic Gra-
dient Descent algorithm (Algorithm 3) along with two versions of AdaGrad: (1)
AdaGrad-Norm Ward et al. (2019) (Algorithm 4), where the step-size is a scalar,
and (2) the original AdaGrad algorithm Duchi et al. (2011) (Algorithm (5)), where
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the step-size for each coordinates varies. Since AdaGrad-Norm is simpler to ana-
lyze, most results for AdaGrad have been for this scalar version either in-expectation
Ward et al. (2019), Faw et al. (2022), Li and Orabona (2020), Li and Orabona (2019),
Liu et al. (2022), and Ene et al. (2021) or high-probability Kavis et al. (2021). For the
standard AdaGrad algorithm, to the best of our knowledge, Défossez et al. (2022) is
the only work that has analyzed the standard version of AdaGrad in expectation, but
their result does not adapt to noise and requires a strong assumption: the stochastic
gradients are uniformly bounded. On the other hand, our high probability result for
vanilla AdaGrad adapts to noise and holds under relatively mild assumptions.

Recall that, we assume that the optimization problem has domain X = Rd. As
usual in non-convex analysis, we assume that f is an L-smooth function: for all
x, y ∈ Rd,

∥∇ f (x)−∇ f (y)∥ ≤ L ∥x− y∥ .

Smoothness implies the following quadratic upperbound that we will utilize: for all
x, y ∈ Rd

f (y)− f (x) ≤ ⟨∇ f (x), y− x⟩+ L
2
∥y− x∥2 . (4.6)

4.2.1 Analysis of Stochastic Gradient Descent

Algorithm 3 Stochastic Gradient Descent (SGD)
Parameters: initial point x1, step sizes {ηt}
for t = 1 to T do

xt+1 = xt − ηt∇̂ f (xt)

We will prove the following convergence guarantee of Algorithm 3.

Theorem 4.2.1. Assume f is L-smooth and satisfies Assumptions (1’), (2), and that the
gradient noise is σ-sub-gaussian. Let ∆1 := f (x1)− f∗. With probability at least 1− δ, the
iterate sequence (xt)t≥1 output by Algorithm 3 satisfies

(1) Setting ηt = min
{

1
L ;
√

∆1
σ2LT

}
,

1
T

T

∑
t=1
∥∇ f (xt)∥2 ≤ 2∆1L

T
+ 5σ

√
∆1L

T
+

12σ2 log 1
δ

T
;

(2) Setting ηt =
1

L
√

t
,

1
T

T

∑
t=1
∥∇ f (xt)∥2 ≤

2∆1L + 3σ2 (1 + log T) + 12σ2 log 1
δ√

T
.

Comparison with prior works: When the time horizon T is known to the algo-
rithm, by choosing the step size η in part (1) of Theorem 4.2.1, the bound is adaptive
to noise, i.e, when σ = 0 we recover O( 1

T ) convergence rate of the (deterministic)
gradient descent algorithm. Notice that the bound in this case does not have a log T
term incurred. When T is unknown, the extra log T appears as a result of setting a
time-varying step size ηt =

1
L
√

t
. This log T appears as an additive term to the log 1

δ

term, as opposed to being multiplicative, i.e, log T log 1
δ as in previous works Li and

Orabona (2020), Madden et al. (2020), and Li and Liu (2022).
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Analysis: To proceed, we define for t ≥ 1

∆t := f (xt)− f∗; ξt := ∇̂ f (xt)−∇ f (xt).

We letFt := σ (ξ1, . . . , ξt−1) denote the natural filtration. Note that xt isFt-measurable.
The following lemma serves as a fundamental step of our analysis; the proof of
which can be found in Section 4.5.

Lemma 4.2.2. For t ≥ 1, we have

Ct := ηt

(
1− Lηt

2

)
∥∇ f (xt)∥2 + ∆t+1 − ∆t

≤
(

Lη2
t − ηt

)
⟨∇ f (xt), ξt⟩+

Lη2
t

2
∥ξt∥2 . (4.7)

Now we can follow the similar concentration argument from the convex setting.
The difference now is the error term in the RHS of (4.7) can be transferred into the
gradient term ∥∇ f (xt)∥2 instead of a function value gap term. This actually makes
things easier since this term can be readily absorbed by the gradient term in Ct,
and we do not have to carefully impose an additional condition on wt to make a
telescoping sum. For wt ≥ 0, we define

Zt = wtCt − vt ∥∇ f (xt)∥2 , ∀ 1 ≤ t ≤ T

where vt = 3σ2w2
t η2

t (ηtL− 1)2

and St =
T

∑
i=t

Zi. ∀ 1 ≤ t ≤ T + 1

Using the same technique as in the previous Section, we can prove the following key
inequality.

Theorem 4.2.3. Suppose for all 1 ≤ t ≤ T, ηt, wt satisfying 0 ≤ wtη
2
t L ≤ 1

2σ2 then

E [exp (St) | Ft] ≤ exp

(
3σ2

T

∑
s=t

wtη
2
t L

2

)
. (4.8)

Markov’s inequality gives us the following guarantee.

Corollary 4.2.4. For all 1 ≤ t ≤ T, if ηtL ≤ 1 and 0 ≤ wtη
2
t L ≤ 1

2σ2 then

T

∑
t=1

[
wtηt

(
1− ηtL

2

)
− vt

]
∥∇ f (xt)∥2 + wT∆T+1

≤w1∆1 +

(
T

∑
t=2

(wt − wt−1)∆t + 3σ2
T

∑
t=1

wtη
2
t L

2

)
+ log

1
δ

. (4.9)

Equipped with Lemmas 4.2.2 and 4.2.3, we are ready to prove Theorem 4.2.1 by
specifying the choice of wt that satisfy the condition of Lemma 4.2.3. In the first case,

we choose ηt = η, wt = w = 1
6σ2η

where η = min{ 1
L ;
√

∆1
σ2LT}. In the second case, we

set ηt =
η√

t
, wt = w = 1

6σ2η
where η = 1

L . We show the full proof in Section 4.5.
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Algorithm 4 AdaGrad-Norm
Parameters: x1, η > 0.
for t = 1 to T

bt =
√

b2
0 + ∑t

i=1 ∥∇̂ f (xi)∥2

xt+1 = xt − η
bt
∇̂ f (xt)

Algorithm 5 AdaGrad

Parameters: x1, b0 ∈ Rd and η ∈ R.
for t = 1 to T do

bt,i =
√

b2
0,i + ∑t

j=1 ∇̂i f (xj)2, for i ∈
[d].

xt+1,i = xt,i − η
bt,i
∇̂i f (xt), for i ∈ [d].

4.2.2 AdaGrad-Norm and AdaGrad-Coordinate

In this section, we present our main results for the high probability convergence for
non-convex objectives of AdaGrad-Norm Ward et al. (2019) (Algorithm 4) as well
as the standard AdaGrad Duchi et al. (2011) algorithm (Algorithm 5) that updates
each coordinate separately. Here, d ∈ N denotes the dimension of the problem, vi

denotes the i-th coordinate of a vector v, and ∇̂i f (xt) denotes the i-th coordinate of
the stochastic gradient at time t.

Comparison with prior works: Ward et al. (2019) and Faw et al. (2022) show the
convergence of AdaGrad-Norm with polynomial dependency on poly

( 1
δ

)
where

1− δ is the success probability. The latter relaxes several assumptions made in the
former, including the boundedness of the gradients and noise variance. When as-
suming a sub-Gaussian noise, Kavis et al. (2021) show a convergence in high prob-
ability, but still assume that the gradients are bounded which circumvents many of
the difficulties due to the error term. We remove this assumption and establish the
convergence of AdaGrad-Norm in the theorem 4.2.5. Unlike existing work, the tech-
nique employed to prove this theorem readily extends to the standard version of
AdaGrad (Algorithm 5) with per-coordinate update.

For simplicity, we let ∆t := f (xt)− f∗, where f∗ is any valid lower bound for f .

Theorem 4.2.5. If f is L-smooth and satisfies assumptions (1’), (2) and (3). With probability
at least 1− δ, the iterate sequence (xt)t≥1 output by AdaGrad-Norm (Algorithm 4) satisfies

1
T

T

∑
t=1
∥∇ f (xt)∥2 ≤ g(δ) ·O

(
σ√
T
+

r(δ)
T

)
.

where

g(δ) := O

(
∆1 + c(δ)

√
log

T
δ
+ L log

(
σ
√

T + r(δ)
))

c(δ) := O
(

σ3 log
(

1
δ

)
+ σ log

(
1 + σ2T + σ2 log

1
δ

)
+ σ log

(
σ
√

T + r(δ)
))

, and

r(δ) := O(∆1 + σ2 log
1
δ
+ L log L)

are polylog terms.

The next theorem show the first convergence result in high-probability for vanilla
AdaGrad in the non-convex regime.
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Theorem 4.2.6. If f is L-smooth and satisfies assumptions (1’), (2) and (3). With probability
at least 1− δ, the iterate sequence (xt)t≥1 output by AdaGrad (Algorithm 5) satisfies

1
T

T

∑
t=1
∥∇ f (xt)∥2

1 ≤ g(δ) ·O
(
∥σ∥1√

T
+

r(δ)
T

)
,

where

g(δ) := O

(
∆1 +

(
dσmax +

d

∑
i=1

ci(δ)

)√
log

dT
δ

+ dL log
(
∥σ∥1

√
T + r(δ)

))
,

ci(δ) := O
(

σ3
i log

(
d
δ

)
+ σi log

(
1 + σ2

i T + σ2
i log

d
δ

)
+ ∥σ∥1 log

(
∥σ∥1

√
T + r(δ)

))
, and

r(δ) := O

(
∆1 +

∥∥σ2∥∥
1 log

(
d
δ

)
+ ∥σ∥1

√
log

d
δ
+ Ld log L

)
,

are the polylog terms.

Both of these results are adaptive to noise: the rate Õ
(

1√
T

)
will improve to Õ

( 1
T

)
as the noise σ approaches 0. Furthermore, they hold regardless of how η and b0 is
set.

Analysis overview The first key new technique is unlike prior works: we do not
use the division by the step size, which makes the analysis of AdaGrad-Norm and
AdaGrad virtually the same. We can thus focus on AdaGrad-Norm. To obtain a
high probability bound, our analysis of AdaGrad-Norm utilizes the same martin-
gale concentration technique as presented throughout this paper to bound the er-
ror terms ηt ⟨∇ f (xt), ξt⟩. However, the step size ηt = η

bt
now has a dependency

on the randomness at time t due to bt, preventing us from applying Lemma 4.3.2.
To circumvent this, inspired by Ward et al. (2019), we introduce a proxy step size
at := b2

t−1 + ∥∇ f (xt)∥2 that replaces the stochastic gradient with the true gradient at
time t for analysis purposes. Using that along with standard smoothness analysis,
we obtain

Lemma 4.2.7. For t ≥ 1, let ξt = ∇̂ f xt) − ∇ f (xt), a2
t := b2

t−1 + ∥∇ f (xt)∥2, and
Mt = maxi≤t ∥ξi∥, then we have

T

∑
t=1

∥∇ f (xt)∥2

bt
≤ ∆1

η
+

MT

2

[
T

∑
t=1

∥∇ f (xt)∥2

a2
t

+
T

∑
t=1

∥ξt∥2

b2
t

]

−
T

∑
t=1

1
at
⟨∇ f (xt), ξt⟩+

T

∑
t=1

Lη

2b2
t

∥∥∥∇̂ f xt)
∥∥∥2

.

Now, the randomness at time t of the error term 1
at
⟨∇ f (xt), ξt⟩ only depends on

ξt, which follows a sub-Gaussian distribution with mean 0. Hence, we can utilize our
previous techniques to bound −∑T

t=1
1
at
⟨∇ f (xt), ξt⟩ with high probability. Compar-

ing to the analysis in expectation from Ward et al. (2019), terms like ∑T
t=1

∥∇ f (xt)∥2

a2
t

must be handled more carefully to obtain a high probability bound. A bound for
MT has also been derived in previous works by Li and Orabona (2020) and Liu et al.
(2022). Combining with Lemma 4.2.7, we obtain the following lemma.
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Lemma 4.2.8. With probability at least 1− 2δ, we have

T

∑
t=1

∥∇ f (xt)∥2

bt
≤ ∆1

η
+ σ

√
log

T
δ

[
8 log

(
bT

b0

)
+ 5

T

∑
t=1

∥ξt∥2

b2
t

]
+ σ

√
log

1
δ
+ Lη log

bT

b0
.

Since, ∑T
t=1

∥∇ f (xt)∥2

bt
≥ 1

bT
∑T

t=1 ∥∇ f (xt)∥2, it suffices to bound bT and ∑T
t=1

∥ξt∥2

b2
t

from this point on (see Lemma 4.6.1 and Lemma 4.6.6). The analysis for these terms
utilize similar martingale techniques throughout this paper, where the details are
deferred to Section 4.6. For the coordinate version of AdaGrad, since our techniques
only rely on addition and scalar multiplication, we can (with some effort) generalize
our technique to the vanilla Adagrad version. The full proofs for vanilla AdaGrad
are presented in Section 4.7.

4.3 Technical Tools

We will use the following technical tools throughout our analysis for light-tailed
noise.

Lemma 4.3.1. For any a ≥ 0, 0 ≤ b ≤ 1
2σ and an σ-sub-Gaussian random variable X,

E

[
1 + b2X2 +

∞

∑
i=2

1
i!
(
aX + b2X2)i

]
≤ exp

(
3
(
a2 + b2) σ2) .

Especially, when b = 0, we have

E

[
1 +

∞

∑
i=2

1
i!
(aX)i

]
≤ exp

(
2a2σ2) .

Proof of Lemma 4.3.1. Consider two cases either a ≥ 1/(2σ) or a ≤ 1/(2σ). First
suppose a ≥ 1/(2σ). We use the inequality uv ≤ u2

4 + v2 here to first obtain

(
aX + b2X2)i ≤

∣∣aX + b2X2∣∣i ≤ (a |X|+ b2X2)i ≤
(

1
4σ2 X2 + a2σ2 + b2X2

)i

.

Thus, we have

E
[
1 + b2X2+

∞

∑
i=2

1
i!
(
aX + b2X2)i

]
≤ E

[
1 + b2X2 +

∞

∑
i=2

1
i!

(
1

4σ2 X2 + a2σ2 + b2X2
)i
]

= E

[
b2X2 + exp

((
1

4σ2 + b2
)

X2 + a2σ2
)
−
(

1
4σ2 + b2

)
X2 − a2σ2

]
= E

[
exp

((
1

4σ2 + b2
)

X2 + a2σ2
)
− 1

4σ2 X2 − a2σ2
]

≤ exp
((

1
4σ2 + b2

)
σ2 + a2σ2

)
≤ exp

(
2a2σ2 + b2σ2)

≤ exp
(
3
(
a2 + b2) σ2)
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Next, let c = max(a, b) ≤ 1/(2σ). We have

E
[
1 + b2X2+

∞

∑
i=2

1
i!
(
aX + b2X2)i

]
= E

[
exp

(
aX + b2X2)− aX

]
≤ E

[(
aX + exp

(
a2X2)) exp

(
b2X2)− aX

]
= E

[
exp

((
a2 + b2)X2)+ aX

(
exp

(
b2X2)− 1

)]
≤ E

[
exp

((
a2 + b2)X2)+ c |X|

(
exp

(
c2X2)− 1

)]
≤ E

[
exp

((
a2 + b2)X2)+ exp

(
2c2X2)− 1

]
≤ E

[
exp

((
a2 + b2 + 2c2)X2)]

≤ exp
((

a2 + b2 + 2c2) σ2)
≤ exp

(
3
(
a2 + b2) σ2) .

In the first inequality, we use the inequality ex − x ≤ ex2∀x. In the third inequality,
we use x

(
ex2 − 1

)
≤ e2x2 − 1 ∀x. This inequality can be proved with the Taylor

expansion.

x
(

ex2 − 1
)
=

∞

∑
i=1

1
i!

x2i+1

≤
∞

∑
i=1

1
i!

x2i + x2i+2

2

=
x2

2
+

∞

∑
i=2

(
1 + i
2i!

)
x2i

≤ x2

2
+

∞

∑
i=2

(
2i

i!

)
x2i

≤ e2x2 − 1

The case when b = 0 simply follows from the above proof.

That implies the following results:

Lemma 4.3.2. Suppose X ∈ Rd such that E [X] = 0 and ∥X∥ is a σ-sub-Gaussian random
variable, then for any a ∈ Rd, 0 ≤ b ≤ 1

2σ ,

E
[
exp

(
⟨a, X⟩+ b2 ∥X∥2

)]
≤ exp

(
3
(
∥a∥2

∗ + b2
)

σ2
)

.

Especially, when b = 0, we have

E [exp (⟨a, X⟩)] ≤ exp
(

2 ∥a∥2
∗ σ2

)
.
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Proof of Lemma 4.3.2. Using Taylor expansion of ex and the fact that E [X] = 0 we
have

E
[
exp

(
⟨a, X⟩+ b2 ∥X∥2

)]
= E

[
1 + ⟨a, X⟩+ b2 ∥X∥2 +

∞

∑
i=2

1
i!

(
⟨a, X⟩+ b2 ∥X∥2

)i
]

= E

[
1 + b2 ∥X∥2 +

∞

∑
i=2

1
i!

(
⟨a, X⟩+ b2 ∥X∥2

)i
]

≤ E

[
1 + b2 ∥X∥2 +

∞

∑
i=2

1
i!

(
∥a∥∗ ∥X∥+ b2 ∥X∥2

)i
]

where for the last line we use Cauchy-Schwartz to obtain ⟨a, X⟩ ≤ ∥a∥∗ ∥X∥. Now
applying Lemma 4.3.1, we obtain

E
[
exp

(
⟨a, X⟩+ b2 ∥X∥2

)]
≤ exp

(
3
(
∥a∥2

∗ + b2
)

σ2
)

Similarly, we obtain the corresponding bound for the case b = 0.

We can generalize that to the vector version:

Corollary 4.3.3. Suppose that X is a mean zero random vector in Rd, where ∥X∥ is σ-
subgaussian. For 0 ≤ a ≤ 1

4σ2 and B ∈ Rd then

E
[
exp

(
a ∥X∥2 + ⟨B, X⟩

)]
≤ exp

(
3σ2(a + ∥B∥2)

)
.

Proof. We have

E
[
exp

(
a ∥X∥2 + ⟨B, X⟩

)]
= E

[
1 + a2 ∥X∥2 + ⟨B, X⟩+

∞

∑
k=2

1
k!

(
a ∥X∥2 + ⟨B, X⟩

)k
]

= E

[
1 + a ∥X∥2 +

∞

∑
k=2

1
k!

(
a ∥X∥2 + ⟨B, X⟩

)k
]

≤ E

[
1 + a ∥X∥2 +

∞

∑
k=2

1
k!

(
a ∥X∥2 + ∥B∥ ∥X∥

)k
]

≤ exp
(

3σ2(a + ∥B∥2)
)

.

We can now control martingale via:

Lemma 4.3.4. If we have a sequence of random variable Xt with Ft = σ(X1, X2, . . . , Xt−1)
for t = 1, 2, . . . , T. If we can bound E [exp (Xt) | Ft] ≤ exp(Yt), where Yt isFt-measurable,
then

T

∑
t=1

Xt ≤
T

∑
t=1

Yt + log (1/δ)

holds with probability at least 1− δ.
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Proof. Define the Zt = Xt −Yt and St = ∑T
i=t Zi. Then

E [exp (Zt) | Ft] = E [exp (Xt −Yt) | Ft]

= exp (−Yt)E [exp (Xt) | Ft] (Yt is Ft-measurable)
≤ exp(−Yt) exp(Yt) = exp(0) = 1.

Then we show E [exp (S1)] ≤ 1 via an induction: we have E [exp (ST) | FT] =
E [exp (ZT) | FT] ≤ 1. Suppose that E [exp (St+1) | Ft+1]

E [exp(St) | Ft] = E [exp(Zt) exp(St+1) | Ft]

= E [exp (Zt)E [exp (St+1) | Ft+1] | Ft]

≤ E [exp(Zt) | Ft] ≤ 1.

Hence, this implies that E [exp(S1)] ≤ 1. By Markov’s inequality, this means that
S1 ≤ log( 1

δ ) with probability at least 1− δ:

S1 =
T

∑
t=1

Zt =
T

∑
t=1

Xt −Yt ≤ log (1/δ)

=⇒
T

∑
t=1

Xt ≤
T

∑
t=1

Yt + log (1/δ) .

4.4 Missing Proofs from Section 4.1

4.4.1 Stochastic Mirror Descent

Proof of Lemma (4.1.2). By the optimality condition, we have〈
ηt∇̂ f (xt) +∇xDψ (xt+1, xt) , x∗ − xt+1

〉
≥ 0

and thus 〈
ηt∇̂ f (xt), xt+1 − x∗

〉
≤
〈
∇xDψ (xt+1, xt) , x∗ − xt+1

〉
Note that〈

∇xDψ (xt+1, xt) , x∗ − xt+1
〉
= ⟨∇ψ (xt+1)−∇ψ (xt) , x∗ − xt+1⟩
= Dψ (x∗, xt)−Dψ (xt+1, xt)−Dψ (x∗, xt+1)

and thus

ηt

〈
∇̂ f (xt), xt+1 − x∗

〉
≤ Dψ (x∗, xt)−Dψ (x∗, xt+1)−Dψ (xt+1, xt)

≤ Dψ (x∗, xt)−Dψ (x∗, xt+1)−
1
2
∥xt+1 − xt∥2

where we have used that Dψ (xt+1, xt) ≥ 1
2 ∥xt+1 − xt∥2 by the strong convexity of

ψ.
By convexity,

f (xt)− f (x∗) ≤ ⟨∇ f (xt) , xt − x∗⟩ = ⟨ξt, x∗ − xt⟩+
〈
∇̂ f (xt) , xt − x∗

〉
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Combining the two inequalities, we obtain

ηt ( f (xt)− f (x∗)) + Dψ (x∗, xt+1)−Dψ (x∗, xt)

≤ ηt ⟨ξt, x∗ − xt⟩+ ηt

〈
∇̂ f (xt), xt − xt+1

〉
− 1

2
∥xt+1 − xt∥2

≤ ηt ⟨ξt, x∗ − xt⟩+
η2

t
2

∥∥∥∇̂ f (xt)
∥∥∥2

∗

Using the triangle inequality and the bounded gradient assumption ∥∇ f (x)∥∗ ≤ G,
we obtain∥∥∥∇̂ f (xt)

∥∥∥2

∗
= ∥ξt +∇ f (xt)∥2

∗ ≤ 2 ∥ξt∥2
∗ + 2 ∥∇ f (xt)∥2

∗ ≤ 2
(
∥ξt∥2

∗ + G2
)

.

Thus

ηt ( f (xt)− f (x∗)) + Dψ (x∗, xt+1)−Dψ (x∗, xt) ≤ ηt ⟨ξt, x∗ − xt⟩+ η2
t

(
∥ξt∥2

∗ + G2
)

as needed.

Proof of Corollary 4.1.4. Let

K = 3σ2
T

∑
t=1

wtη
2
t + log

(
1
δ

)
.

By Theorem 4.1.3 and Markov’s inequality, we have

Pr [S1 ≥ K] ≤ Pr [exp (S1) ≥ exp (K)]
≤ exp (−K)E [exp (S1)]

≤ exp (−K) exp

(
3σ2

T

∑
t=1

wtη
2
t

)
= δ.

Note that since vt + wt ≤ wt−1

S1 =
T

∑
t=1

Zt

=
T

∑
t=1

wtηt ( f (xt)− f (x∗))− G2
T

∑
t=1

wtη
2
t +

T

∑
t=1

(
wtDψ (x∗, xt+1)− (vt + wt)Dψ (x∗, xt)

)
≥

T

∑
t=1

wtηt ( f (xt)− f (x∗))− G2
T

∑
t=1

wtη
2
t +

T

∑
t=1

(
wtDψ (x∗, xt+1)− wt−1Dψ (x∗, xt)

)
=

T

∑
t=1

wtηt ( f (xt)− f (x∗))− G2
T

∑
t=1

wtη
2
t + wTDψ (x∗, xT+1)− w0Dψ (x∗, x1) .
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Therefore, with probability at least 1− δ, we have

T

∑
t=1

wtηt ( f (xt)− f (x∗)) + wTDψ (x∗, xT+1)

≤ w0Dψ (x∗, x1) +
(
G2 + 3σ2) T

∑
t=1

wtη
2
t + log

(
1
δ

)

With the above result in hand, we complete the convergence analysis by showing
how to define the sequence {wt} with the desired properties. Theorem 4.1.1 can be
obtained from the two following corollaries.

Corollary 4.4.1. Suppose we run the Stochastic Mirror Descent algorithm with fixed step
sizes ηt = η√

T
. Let wT = 1

12σ2η2 and wt−1 = wt +
6
T σ2η2w2

t for all 1 ≤ t ≤ T. The
sequence {wt} satisfies the conditions required by Corollary 4.1.4. By Corollary 4.1.4, for
any δ > 0, the following events hold with probability at least 1 − δ: Dψ (x∗, xT+1) ≤
2Dψ (x∗, x1) + 12

(
G2 + σ2 (1 + log

( 1
δ

)))
η2, and

1
T

T

∑
t=1

( f (xt)− f (x∗)) ≤ 1√
T

2Dψ (x∗, x1)

η
+

12√
T

(
G2 + σ2

(
1 + log

(
1
δ

)))
η.

In particular, setting ηt =

√
Dψ(x∗,x1)

6(G2+σ2(1+log( 1
δ )))T

we obtain the first case of Theorem 4.1.1.

Proof of Corollary (4.4.1) . Recall from Corollary 4.1.4 that the sequence {wt} needs to
satisfy the following conditions for all 1 ≤ t ≤ T:

wt + 6σ2η2
t w2

t ≤ wt−1

wtη
2
t ≤

1
4σ2

Let C = 6σ2η2. We set wT = 1
C+6σ2η2 = 1

2C . For 1 ≤ t ≤ T, we set wt so that the first
condition holds with equality

wt−1 = wt + 6σ2w2
t η2

t = wt +
6
T

σ2η2w2
t .

We can show by induction that, for every 1 ≤ t ≤ T, we have

wt ≤
1

C + 6
T σ2η2t

.
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The base case t = T follows from the definition of wT. Consider 1 ≤ t ≤ T. Using
the definition of wt−1 and the inductive hypothesis, we obtain

wt−1 = wt +
6
T

σ2η2w2
t

≤ 1
C + 6

T σ2η2t
+

6σ2η2

T
(
C + 6

T σ2η2t
)2

≤ 1
C + 6

T σ2η2t
+

(
C + 6

T σ2η2t
)
−
(
C + 6

T σ2η2(t− 1)
)(

C + 6
T σ2η2 (t− 1)

) (
C + 6

T σ2η2t
)

=
1

C + 6
T σ2η2 (t− 1)

as needed.
Using this fact, we now show that {wt} satisfies the second condition. Indeed,

for every 1 ≤ t ≤ T, we have

wtη
2
t = wt

η2

T
≤ η2

6σ2η2t
=

1
6σ2 .

Thus, by Corollary 4.1.4, with probability ≥ 1− δ, we have

T

∑
t=1

wtηt ( f (xt)− f (x∗)) + wTDψ (x∗, xT+1) ≤ w0Dψ (x∗, x1) +
(
G2 + 3σ2) T

∑
t=1

wtη
2
t + log

(
1
δ

)
Note that wT = 1

2C and 1
2C ≤ wt ≤ 1

C for all 0 ≤ t ≤ T. Thus we obtain

η√
T

T

∑
t=1

( f (xt)− f (x∗)) + Dψ (x∗, xT+1) ≤ 2Dψ (x∗, x1) + 2
(
G2 + 3σ2) η2 + 2C log

(
1
δ

)
= 2Dψ (x∗, x1) + 2

(
G2 + 3σ2) η2 + 12σ2 log

(
1
δ

)
η2

≤ 2Dψ (x∗, x1) + 12
(

G2 + σ2
(

1 + log
(

1
δ

)))
η2

Thus we have

1
T

T

∑
t=1

( f (xt)− f (x∗)) ≤ 1√
T

(
2Dψ (x∗, x1)

η
+ 12

(
G2 + σ2

(
1 + log

(
1
δ

)))
η

)
and

Dψ (x∗, xT+1) ≤ 2Dψ (x∗, x1) + 12
(

G2 + σ2
(

1 + log
(

1
δ

)))
η2.

The analysis extends to the setting where the T is not known and we use the step
sizes ηt =

η√
t
.

Corollary 4.4.2. Suppose we run the Stochastic Mirror Descent algorithm with time-varying
step sizes ηt =

η√
t
. Let wT = 1

12σ2η2(∑T
t=1

1
t )

and wt−1 = wt + 6σ2η2
t w2

t for all 1 ≤ t ≤ T.

The sequence {wt} satisfies the conditions required by Corollary 4.1.4. By Corollary 4.1.4,
for any δ > 0, the following events hold with probability at least 1− δ: Dψ (x∗, xT+1) ≤
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2Dψ (x∗, x1) + 12
(
G2 + σ2 (1 + log

( 1
δ

)))
η2(1 + log T), and

1
T

T

∑
t=1

( f (xt)− f (x∗)) ≤ 1√
T

2Dψ (x∗, x1)

η
+

12√
T

(
G2 + σ2

(
1 + log

(
1
δ

)))
η(1 + log T).

In particular, setting ηt =

√
Dψ(x∗,x1)

6(G2+σ2(1+ln( 1
δ )))t

we obtain the second case of Theorem 4.1.1.

Proof of Corollary (4.4.2). Recall from Corollary 4.1.4 that the sequence {wt} needs to
satisfy the following conditions for all 1 ≤ t ≤ T:

wt + 6σ2η2
t w2

t ≤ wt−1

wtη
2
t ≤

1
4σ2

Let Mt = 6σ2 ∑t
i=1 η2

i and C = MT = 6σ2η2
(

∑T
t=1

1
t

)
. We set wT = 1

C+MT
. For

1 ≤ t ≤ T, we set wt so that the first condition holds with equality

wt−1 = wt + 6σ2η2
t w2

t

We can show by induction that, for every 1 ≤ t ≤ T, we have

wt ≤
1

C + Mt

The base case t = T follows from the definition of wT. Consider 1 ≤ t ≤ T. Using
the definition of wt and the inductive hypothesis, we obtain

wt−1 = wt + 6σ2η2
t w2

t

≤ 1
C + Mt

+
6σ2η2

t

(C + Mt)
2

≤ 1
C + Mt

+
(C + Mt)− (C + Mt−1)

(C + Mt) (C + Mt−1)

=
1

C + Mt−1

as needed.
Using this fact, we now show that {wt} satisfies the second condition. For every

1 ≤ t ≤ T, we have

wtη
2
t ≤

η2
t

C
≤ η2

t

6σ2η2
t
=

1
6σ2

as needed.
Thus, by Corollary 4.1.4, with probability ≥ 1− δ, we have

T

∑
t=1

wtηt ( f (xt)− f (x∗)) + wTDψ (x∗, xT+1) ≤ w0Dψ (x∗, x1) +
(
G2 + 3σ2) T

∑
t=1

wtη
2
t + log

(
1
δ

)
Note that wT = 1

2C and 1
2C ≤ wt ≤ 1

C for all 1 ≤ t ≤ T. Thus we obtain

1
2C

ηT

T

∑
t=1

( f (xt)− f (x∗))+
1

2C
Dψ (x∗, xT+1) ≤

1
C

Dψ (x∗, x1)+
(
G2 + 3σ2) 1

C

T

∑
t=1

η2
t + log

(
1
δ

)
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Plugging in ηt =
η√

t
and simplifying, we obtain

η√
T

T

∑
t=1

( f (xt)− f (x∗)) +Dψ (x∗, xT+1)

≤ 2Dψ (x∗, x1) +
(
2G2 + 6σ2) η2

(
T

∑
t=1

1
t

)
+ 2C log

(
1
δ

)

= 2Dψ (x∗, x1) +

(
2G2 + 6σ2

(
1 + 2 log

(
1
δ

)))
η2

(
T

∑
t=1

1
t

)

Thus we have

1
T

T

∑
t=1

( f (xt)− f (x∗)) ≤ 1√
T

(
2Dψ (x∗, x1)

η
+

(
2G2 + 6σ2

(
1 + 2 log

(
1
δ

)))
η

(
T

∑
t=1

1
t

))

and

Dψ (x∗, xT+1) ≤ 2Dψ (x∗, x1) +

(
2G2 + 6σ2

(
1 + 2 log

(
1
δ

)))
η2

(
T

∑
t=1

1
t

)

4.4.2 Accelerated Stochastic Mirror Descent

The convergence of Algorithm 2 is given in the following Theorem.

Theorem 4.4.3. Assume f satisfies Assumptions (1), (2), (3) and condition (4.5), with
probability at least 1− δ,

(1) Setting ηt = min

{
t

4L ,
√

Dψ(x∗,z0)t
√

6
√

G2+σ2(1+log( 1
δ ))T3/2

}
, then Dψ (x∗, zT) ≤ 4Dψ (x∗, z0)

and

f (yT)− f (x∗) ≤
16LDψ (x∗, z0)

T2 +
8
√

6√
T

√
Dψ (x∗, z0)

(
G2 +

(
1 + log

(
1
δ

))
σ2

)
.

(2) Setting ηt = min

{
t

4L ,
√

Dψ(x∗,z0)
√

6
√

G2+σ2(1+log( 1
δ ))t1/2

}
, then Dψ (x∗, zT) ≤ 2(2+ log T)Dψ (x∗, z0)

and

f (yT)− f (x∗) ≤
16LDψ (x∗, z0)

T2 +
4
√

6(2 + log T)√
T

√
Dψ (x∗, z0)

(
G2 +

(
1 + log

(
1
δ

))
σ2

)
.
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Proof of Lemma 4.1.5. Starting with smoothness, we obtain

f (yt) ≤ f (xt) + ⟨∇ f (xt) , yt − xt⟩+ G ∥yt − xt∥+
β

2
∥yt − xt∥2 ∀x ∈ X

= f (xt) + ⟨∇ f (xt) , yt−1 − xt⟩+ ⟨∇ f (xt) , yt − yt−1⟩+ G ∥yt − xt∥+
β

2
∥yt − xt∥2

= (1− αt) ( f (xt) + ⟨∇ f (xt) , yt−1 − xt⟩)︸ ︷︷ ︸
convexity

+αt ( f (xt) + ⟨∇ f (xt) , yt−1 − xt⟩)︸ ︷︷ ︸
convexity

+ αt ⟨∇ f (xt) , zt − yt−1⟩+ G ∥yt − xt∥+
β

2
∥yt − xt∥2

≤ (1− αt) f (yt−1) + αt f (xt) + αt ⟨∇ f (xt) , zt − xt⟩+ G ∥yt − xt∥︸ ︷︷ ︸
=αt∥zt−zt−1∥

+
β

2
∥yt − xt∥2︸ ︷︷ ︸
=α2

t ∥zt−zt−1∥2

= (1− αt) f (yt−1) + αt f (xt) + αt ⟨∇ f (xt) , zt − xt⟩+ Gαt ∥zt − zt−1∥+
β

2
α2

t ∥zt − zt−1∥2

By the optimality condition for zt,

ηt

〈
∇̂ f (xt), zt − x∗

〉
≤
〈
∇xDψ (zt, zt−1) , x∗ − zt

〉
= Dψ (x∗, zt−1)−Dψ (zt, zt−1)−Dψ (x∗, zt)

Rearranging, we obtain

Dψ (x∗, zt)−Dψ (x∗, zt−1) + Dψ (zt, zt−1) ≤ ηt

〈
∇̂ f (xt) , x∗ − zt

〉
= ηt ⟨∇ f (xt) + ξt, x∗ − zt⟩

By combining the two inequalities, we obtain

f (yt) +
αt

ηt

(
Dψ (x∗, zt)−Dψ (x∗, zt−1) + Dψ (zt, zt−1)

)
≤ (1− αt) f (yt−1) + αt ( f (xt) + ⟨∇ f (xt) , x∗ − xt⟩)︸ ︷︷ ︸

convexity

+ Gαt ∥zt − zt−1∥+
β

2
α2

t ∥zt − zt−1∥2 + αt ⟨ξt, x∗ − zt⟩

≤ (1− αt) f (yt−1) + αt f (x∗) + Gαt ∥zt − zt−1∥+
β

2
α2

t ∥zt − zt−1∥2 + αt ⟨ξt, x∗ − zt⟩

Subtracting f (x∗) from both sides, rearranging, and using that Dψ (zt, zt−1) ≥ 1
2 ∥zt − zt−1∥2,

we obtain

f (yt)− f (x∗) +
αt

ηt

(
Dψ (x∗, zt)−Dψ (x∗, zt−1)

)
≤ (1− αt) ( f (yt−1)− f (x∗)) + αt ⟨ξt, x∗ − zt⟩+ Gαt ∥zt − zt−1∥ − αt

1− βαtηt

2ηt
∥zt − zt−1∥2

= (1− αt) ( f (yt−1)− f (x∗)) + αt ⟨ξt, x∗ − zt−1⟩+ αt ⟨ξt, zt − zt−1⟩+

Gαt ∥zt − zt−1∥ − αt
1− βαtηt

2ηt
∥zt − zt−1∥2

≤ (1− αt) ( f (yt−1)− f (x∗)) + αt ⟨ξt, x∗ − zt−1⟩+ αt ∥zt − zt−1∥ (∥ξt∥∗ + G)−

αt
1− βαtηt

2ηt
∥zt − zt−1∥2

≤ (1− αt) ( f (yt−1)− f (x∗)) + αt ⟨ξt, x∗ − zt−1⟩+
αtηt

2 (1− βαtηt)
(∥ξt∥∗ + G)2
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Finally, we divide by αt
ηt

, and obtain

ηt

αt
( f (yt)− f (x∗)) + Dψ (x∗, zt)−Dψ (x∗, zt−1)

≤ ηt

αt
(1− αt) ( f (yt−1)− f (x∗)) + ηt ⟨ξt, x∗ − zt−1⟩+

η2
t

2 (1− βαtηt)
(∥ξt∥∗ + G)2

≤ ηt

αt
(1− αt) ( f (yt−1)− f (x∗)) + ηt ⟨ξt, x∗ − zt−1⟩+

η2
t

1− βαtηt

(
∥ξt∥2

∗ + G2
)

.

Proof of Theorem 4.1.6. We proceed by induction on t. Consider the base case t =
T + 1, the inequality trivially holds. Next, we consider t ≤ T. We have

E [exp (St) | Ft] = E [exp (Zt + St+1) | Ft] = E [E [exp (Zt + St+1) | Ft+1] | Ft]
(4.10)

We now analyze the inner expectation. Conditioned on Ft+1, Zt is fixed. Using the
inductive hypothesis, we obtain

E [exp (Zt + St+1) | Ft+1] ≤ exp (Zt) exp

(
3σ2

T

∑
i=t+1

wi
η2

i
1− Lαiηi

)
(4.11)

Let Xt = ηt ⟨ξt, x∗ − zt−1⟩. By Lemma 4.1.5, we have

ηt

αt
( f (yt)− f (x∗))− ηt

αt
(1− αt) ( f (yt−1)− f (x∗))− η2

t
1− Lαtηt

G2

+ Dψ (x∗, zt)−Dψ (x∗, zt−1)

≤ Xt +
η2

t
(1− Lαtηt)

∥ξt∥2
∗

and thus

Zt ≤ wtXt + wt
η2

t
1− Lαtηt

∥ξt∥2
∗ − vtDψ (x∗, zt−1)

Plugging into (4.11), we obtain

E [exp (Zt + St+1) | Ft+1]

≤ exp

(
wtXt − vtDψ (x∗, zt−1) + wt

η2
t

1− Lαtηt
∥ξt∥2

∗ + 3σ2
T

∑
i=t+1

wi
η2

i
1− Lαiηi

)

Plugging into (4.10), we obtain

E [exp (St) | Ft]

≤ exp

(
−vtDψ (x∗, zt−1) + 3σ2

T

∑
i=t+1

wi
η2

i
1− Lαiηi

)
E

[
exp

(
wtXt + wt

η2
t

1− Lαtηt
∥ξt∥2

∗

)
| Ft

]
(4.12)
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Next, we analyze the expectation on the RHS of the above inequality. Note that
Xt = ηt ⟨ξt, x∗ − zt−1⟩ and E [Xt | Ft] = 0. Applying Lemma 4.3.2, we obtain

E

[
exp

(
wtXt + wt

η2
t

1− Lαtηt
∥ξt∥2

∗

)
| Ft

]
≤ exp

(
3
(

w2
t η2

t ∥x∗ − zt−1∥2 + wt
η2

t
1− Lαtηt

)
σ2
)

≤ exp
(

3
(

2w2
t η2

t Dψ (x∗, zt−1) + wt
η2

t
1− Lαtηt

)
σ2
)

(4.13)

On the last line we used that Dψ (x∗, zt−1) ≥ 1
2 ∥x∗ − zt−1∥2, which follows from the

strong convexity of ψ.
Plugging in (4.13) into (4.12) and using that vt = 6σ2w2

t η2
t , we obtain

E [exp (St) | Ft] ≤ exp

(
3σ2

T

∑
i=t

wi
η2

i
1− Lαiηi

)

as needed.

Proof of Corollary 4.1.7. Let

K = 3σ2
T

∑
t=1

wt
η2

t
1− Lαtηt

+ log
(

1
δ

)
By Theorem 4.1.6 and Markov’s inequality, we have

Pr [S1 ≥ K] ≤ Pr [exp (S1) ≥ exp (K)]
≤ exp (−K)E [exp (S1)]

≤ exp (−K) exp

(
3σ2

T

∑
t=1

wt
η2

t
1− Lαtηt

)
= δ
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Note that since vt + wt ≤ wt−1

S1 =
T

∑
t=1

Zt

=
T

∑
t=1

wt

(
ηt

αt
( f (yt)− f (x∗))− ηt (1− αt)

αt
( f (yt−1)− f (x∗))

)
+

T

∑
t=1

wtDψ (x∗, zt)− (vt + wt)Dψ (x∗, zt−1)− G2
T

∑
t=1

wt
η2

t
1− Lαtηt

≥
T

∑
t=1

wt

(
ηt

αt
( f (yt)− f (x∗))− ηt (1− αt)

αt
( f (yt−1)− f (x∗))

)
+

T

∑
t=1

wtDψ (x∗, zt)− wt−1Dψ (x∗, zt−1)− G2
T

∑
t=1

wt
η2

t
1− Lαtηt

=
T

∑
t=1

wt

(
ηt

αt
( f (yt)− f (x∗))− ηt (1− αt)

αt
( f (yt−1)− f (x∗))

)
+ wTDψ (x∗, zT)− w0Dψ (x∗, z0)− G2

T

∑
t=1

wt
η2

t
1− Lαtηt

Therefore, with probability at least 1− δ, we have

T

∑
t=1

wt

(
ηt

αt
( f (yt)− f (x∗))− ηt (1− αt)

αt
( f (yt−1)− f (x∗))

)
+ wTDψ (x∗, zT)

≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2) T

∑
t=1

wt
η2

t
1− Lαtηt

+ log
(

1
δ

)
.

Corollary 4.4.4. Suppose we run the Accelerated Stochastic Mirror Descent algorithm with
the standard choices αt = 2

t+1 and ηt = ηt with η ≤ 1
4L . Let wT = 1

3σ2η2T(T+1)(2T+1)

and wt−1 = wt + 6σ2η2
t w2

t for all 1 ≤ t ≤ T. The sequence {wt}0≤t≤T satisfies the
conditions required by Corollary 4.1.7. By Corollary 4.1.7, with probability at least 1− δ,
Dψ (x∗, zT) ≤ 2Dψ (x∗, z0) + 12

(
G2 +

(
1 + log

( 1
δ

))
σ2) η2T3 and

f (yT)− f (x∗) ≤
4Dψ (x∗, z0)

ηT2 + 24
(

G2 +

(
1 + log

(
1
δ

))
σ2
)

ηT.

In particular, setting η = min

{
1

4L ,
√

Dψ(x∗,z0)
√

6
√

G2+σ2(1+log( 1
δ ))T3/2

}
, we obtain the first case of

Theorem 4.4.3.

Proof of Corollary 4.4.4. Recall from Corollary 4.1.7 that the sequence {wt} needs to
satisfy the following conditions:

wt + 6σ2η2
t w2

t ≤ wt−1 ∀1 ≤ t ≤ T (4.14)

wtη
2
t

1− Lαtηt
≤ 1

4σ2 ∀0 ≤ t ≤ T (4.15)
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We will set {wt} so that it satisfies the following additional condition, which will
allow us to telescope the sum on the RHS of Corollary 4.1.7:

wt−1
ηt−1

αt−1
≥ wt

ηt (1− αt)

αt
∀1 ≤ t ≤ T (4.16)

Given wT, we set wt−1 for every 1 ≤ t ≤ T so that the first condition (4.14) holds
with equality:

wt−1 = wt + 6σ2η2
t w2

t = wt + 6σ2η2t2w2
t

Let C = σ2η2T (T + 1) (2T + 1). We set

wT =
1

C + 6σ2η2 ∑T
i=1 i2

=
1

C + σ2η2T (T + 1) (2T + 1)
=

1
2σ2η2T (T + 1) (2T + 1)

Given this choice for wT, we now verify that, for all 0 ≤ t ≤ T, we have

wt ≤
1

C + 6σ2η2 ∑t
i=1 i2

=
1

C + σ2η2t (t + 1) (2t + 1)

We proceed by induction on t. The base case t = T follows from the definition of
wT. Consider t ≤ T. Using the definition of wt−1 and the inductive hypothesis, we
obtain

wt−1 = wt + 6σ2η2t2w2
t

≤ 1
C + 6σ2η2 ∑t

i=1 i2
+

6σ2η2t2(
C + 6σ2η2 ∑t

i=1 i2
)2

≤ 1
C + 6σ2η2 ∑t

i=1 i2
+

(
C + 6σ2η2 ∑t

i=1 i2)− (C + 6σ2η2 ∑t−1
i=1 i2

)
(
C + 6σ2η2 ∑t

i=1 i2
) (

C + 6σ2η2 ∑t−1
i=1 i2

)
=

1
C + 6σ2η2 ∑t−1

i=1 i2

as needed.
Let us now verify that the second condition (4.15) also holds. Using that 2t

t+1 ≤ 2,
Lη ≤ 1

4 , and T ≥ 2, we obtain

wtη
2
t

1− Lαtηt
=

wtη
2t2

1− Lη 2t
t+1

≤ 2wtη
2t2 ≤ 2η2t2

C + 6σ2η2t2

=
t2

σ2T (T + 1) (2T + 1) + 3σ2t2

≤ 1
σ2 (2T + 1) + 3σ2 ≤

1
4σ2

as needed.
Let us now verify that the third condition (4.16) also holds. Since ηt = ηt and

αt =
2

t+1 , we have ηt−1
αt−1

= ηt(1−αt)
αt

= ηt(t−1)
2 . Since wt ≤ wt−1, it follows that condition

(4.16) holds.
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We now turn our attention to the convergence. By Corollary 4.1.7, with probabil-
ity ≥ 1− δ, we have

T

∑
t=1

wt

(
ηt

αt
( f (yt)− f (x∗))− ηt (1− αt)

αt
( f (yt−1)− f (x∗))

)
+ wTDψ (x∗, zT)

≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2) T

∑
t=1

wt
η2

t
1− Lαtηt

+ log
(

1
δ

)
Grouping terms on the LHS and using that α1 = 1, we obtain

T−1

∑
t=1

(
wt

ηt

αt
− wt+1

ηt+1 (1− αt+1)

αt+1

)
( f (yt)− f (x∗)) + wT

ηT

αT
( f (yT)− f (x∗)) + wTDψ (x∗, zT)

≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2) T

∑
t=1

wt
η2

t
1− Lαtηt

+ log
(

1
δ

)
Since {wt} satisfies condition (4.16), the coefficient of f (yt)− f (x∗) is non-negative
and thus we can drop the above sum. We obtain

wT
ηT

αT
( f (yT)− f (x∗)) + wTDψ (x∗, zT)

≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2) T

∑
t=1

wt
η2

t
1− Lαtηt

+ log
(

1
δ

)
Using that wT = 1

2C and wt ≤ 1
C for all 0 ≤ t ≤ T − 1, we obtain

1
2C

ηT

αT
( f (yT)− f (x∗)) +

1
2C

Dψ (x∗, zT)

≤ 1
C

Dψ (x∗, z0) +
1
C
(
G2 + 3σ2) T

∑
t=1

η2
t

1− Lαtηt
+ log

(
1
δ

)
.

Thus

ηT

αT
( f (yT)− f (x∗)) + Dψ (x∗, zT)

≤ 2Dψ (x∗, z0) + 2
(
G2 + 3σ2) T

∑
t=1

η2
t

1− Lαtηt
+ 2C log

(
1
δ

)
= 2Dψ (x∗, z0) + 2

(
G2 + 3σ2) T

∑
t=1

η2
t

1− Lαtηt
+ 2σ2 log

(
1
δ

)
η2T (T + 1) (2T + 1) .

Using that Lη ≤ 1
4 and 2t

t+1 ≤ 2, we obtain

T

∑
t=1

η2
t

1− Lαtηt
=

T

∑
t=1

η2t2

1− Lη 2t
t+1

≤
T

∑
t=1

2η2t2 =
1
3

η2T (T + 1) (2T + 1)
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Plugging in and using that ηT = ηT and αT = 2
T+1 , we obtain

η
T (T + 1)

2
( f (yT)− f (x∗)) + Dψ (x∗, zT)

≤ 2Dψ (x∗, z0) +

(
2
3

G2 + 2
(

1 + log
(

1
δ

))
σ2
)

η2T (T + 1) (2T + 1)

≤ 2Dψ (x∗, z0) + 2
(

G2 +

(
1 + log

(
1
δ

))
σ2
)

η2T (T + 1) (2T + 1) .

We can further simplify the bound by lower bounding T (T + 1) ≥ T2 and upper
bounding T (T + 1) (2T + 1) ≤ 6T3. We obtain

ηT2 ( f (yT)− f (x∗)) + 2Dψ (x∗, zT) ≤ 4Dψ (x∗, z0) + 24
(

G2 +

(
1 + log

(
1
δ

))
σ2
)

η2T3.

Thus we obtain

f (yT)− f (x∗) ≤
4Dψ (x∗, z0)

ηT2 + 24
(

G2 +

(
1 + log

(
1
δ

))
σ2
)

ηT,

and

Dψ (x∗, zT) ≤ 2Dψ (x∗, z0) + 12
(

G2 +

(
1 + log

(
1
δ

))
σ2
)

η2T3.

Corollary 4.4.5. Suppose we run the Accelerated Stochastic Mirror Descent algorithm
with the standard choices αt = 2

t+1 and ηt = min
{

t
4L , η√

t

}
. Let wT = 1

12σ2 ∑T
i=1 η2

t
and

wt−1 = wt + 6σ2η2
t w2

t for all 1 ≤ t ≤ T. The sequence {wt}0≤t≤T satisfies the con-
ditions required by Corollary 4.1.7. By Corollary 4.1.7, with probability at least 1 − δ,
Dψ (x∗, zT) ≤ 2Dψ (x∗, z0) + 12

(
G2 +

(
1 + log

( 1
δ

))
σ2) η2(1 + log T) and

f (yT)− f (x∗)

≤ 16L
T2 Dψ (x∗, z0)

+
2

T1/2η

(
2Dψ (x∗, z0) + 12

(
G2 +

(
1 + log

(
1
δ

))
σ2
)

η2(1 + log T)
)

.

In particular, setting ηt = min

{
t

4L ,
√

Dψ(x∗,z0)
√

6
√

G2+σ2(1+log( 1
δ ))t1/2

}
, we obtain the second case

of Theorem 4.4.3.

Proof of Corollary 4.4.5. Recall from Corollary 4.1.7 that the sequence {wt} needs to
satisfy the following conditions:

wt + 6σ2η2
t w2

t ≤ wt−1 ∀1 ≤ t ≤ T (4.17)

wtη
2
t

1− Lαtηt
≤ 1

4σ2 ∀0 ≤ t ≤ T (4.18)



Chapter 4. Light-Tailed Noise: (Accelerated) SMD, SGD, and AdaGrad 39

We will set {wt} so that it satisfies the following additional condition, which will
allow us to telescope the sum on the RHS of Corollary 4.1.7:

wt−1
ηt−1

αt−1
≥ wt

ηt (1− αt)

αt
∀1 ≤ t ≤ T − 1 (4.19)

Given wT, we set wt−1 for every 1 ≤ t ≤ T so that the first condition (4.17) holds
with equality:

wt−1 = wt + 6σ2η2
t w2

t = wt + 6σ2η2t2w2
t

Let C = 6σ2 ∑T
i=1 η2

t . We set

wT =
1

12σ2 ∑T
i=1 η2

t
=

1
2C

Given this choice for wT, we now verify that, for all 0 ≤ t ≤ T, we have

wt ≤
1

C + 6σ2 ∑t
i=1 η2

i

We proceed by induction on t. The base case t = T follows from the definition of
wT. Consider t ≤ T. Using the definition of wt−1 and the inductive hypothesis, we
obtain

wt−1 = wt + 6σ2η2
t w2

t

≤ 1
C + 6σ2 ∑t

i=1 η2
i
+

6σ2η2
t(

C + 6σ2 ∑t
i=1 η2

i

)2

≤ 1
C + 6σ2 ∑t

i=1 η2
i
+

(
C + 6σ2 ∑t

i=1 η2
i
)
−
(

C + 6σ2 ∑t−1
i=1 η2

i

)
(
C + 6σ2 ∑t

i=1 η2
i

) (
C + 6σ2 ∑t−1

i=1 η2
i

)
=

1
C + 6σ2 ∑t−1

i=1 η2
i

as needed.
Let us now verify that the second condition (4.18) also holds. Using that Lηt ≤ t

4 ,
and T ≥ 2, we obtain

wtη
2
t

1− Lαtηt
≤ wtη

2
t

1− t
4

2
t+1

≤ 2wtη
2
t ≤

2η2
t

6σ2 ∑T
i=1 η2

t + 6σ2 ∑t
i=1 η2

i

≤ 2η2
t

12σ2η2
t
≤ 1

4σ2

as needed.
Let us now verify that the third condition (4.19) also holds. Since αt =

2
t+1 , we

have

ηt−1

αt−1
=

ηt−1t
2

ηt (1− αt)

αt
=

ηt (t− 1)
2

If ηt−1 = t−1
4L then we have ηt ≤ t

4L and ηt(1−αt)
αt

≤ ηt−1
αt−1

= t(t−1)
8L . If ηt−1 = η√

t−1
then

ηt =
η√

t
,we also have ηt(1−αt)

αt
≤ ηt−1

αt−1
. Since wt ≤ wt−1, it follows that condition (4.19)

holds.
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We now turn our attention to the convergence. By Corollary 4.1.7, with probabil-
ity ≥ 1− δ, we have

T

∑
t=1

wt

(
ηt

αt
( f (yt)− f (x∗))− ηt (1− αt)

αt
( f (yt−1)− f (x∗))

)
+ wTDψ (x∗, zT)

≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2) T

∑
t=1

wt
η2

t
1− Lαtηt

+ log
(

1
δ

)
.

Grouping terms on the LHS and using that α1 = 1, we obtain

T−1

∑
t=1

(
wt

ηt

αt
− wt+1

ηt+1 (1− αt+1)

αt+1

)
( f (yt)− f (x∗))

+ wT
ηT

αT
( f (yT)− f (x∗)) + wTDψ (x∗, zT)

≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2) T

∑
t=1

wt
η2

t
1− Lαtηt

+ log
(

1
δ

)
.

Since {wt} satisfies condition (4.19), the coefficient of f (yt)− f (x∗) is non-negative
and thus we can drop the above sum. We obtain

wT
ηT

αT
( f (yT)− f (x∗)) + wTDψ (x∗, zT)

≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2) T

∑
t=1

wt
η2

t
1− Lαtηt

+ log
(

1
δ

)
.

Using that wT = 1
2C and wt ≤ 1

C for all 0 ≤ t ≤ T − 1, we obtain

1
2C

ηT

αT
( f (yT)− f (x∗)) +

1
2C

Dψ (x∗, zT)

≤ 1
C

Dψ (x∗, z0) +
1
C
(
G2 + 3σ2) T

∑
t=1

η2
t

1− Lαtηt
+ log

(
1
δ

)
Thus

ηT

αT
( f (yT)− f (x∗)) + Dψ (x∗, zT)

≤ 2Dψ (x∗, z0) + 2
(
G2 + 3σ2) T

∑
t=1

η2
t

1− Lαtηt
+ 2C log

(
1
δ

)
Using that Lηt ≤ t

4 , we obtain

T

∑
t=1

η2
t

1− Lαtηt
=

T

∑
t=1

η2
t

1− t
4

2
t+1

≤
T

∑
t=1

2η2
t =

C
3σ2

Plugging in and using that ηT = ηT and αT = 2
T+1 , we obtain

ηT (T + 1)
2

( f (yT)− f (x∗)) + Dψ (x∗, zT)

≤ 2Dψ (x∗, z0) +

(
2G2 + 6

(
1 + log

(
1
δ

))
σ2
)

C
3σ2
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If T
4L ≤

η√
T

which means T3/2 ≤ 4Lη then ηT = T
4L we have

C = 6σ2
T

∑
i=1

η2
t =

6σ2

16L2

T

∑
i=1

t2 ≤ 3σ2T3

8L2 ≤ 6σ2η2

Hence

ηT (T + 1)
2

( f (yT)− f (x∗)) + Dψ (x∗, zT)

≤ 2Dψ (x∗, z0) +

(
G2 +

(
1 + log

(
1
δ

))
σ2
)

3T3

4L2

which entails

f (yT)− f (x∗) ≤ 16L
T2 Dψ (x∗, z0) +

(
G2 +

(
1 + log

(
1
δ

))
σ2
)

6T
L

=
16L
T2 Dψ (x∗, z0) +

6√
T

(
G2 +

(
1 + log

(
1
δ

))
σ2
)

T3/2

L

≤ 16L
T2 Dψ (x∗, z0) +

24√
T

(
G2 +

(
1 + log

(
1
δ

))
σ2
)

η

and

Dψ (x∗, zT) ≤ 2Dψ (x∗, z0) + 12
(

G2 +

(
1 + log

(
1
δ

))
σ2
)

η2

If η√
T
≤ T

4L then ηT = η√
T

. Let T0 be the largest t such that η√
t
≥ t

4L , we have

T3
0 ≤ 16L2η2

C = 6σ2
T

∑
i=1

η2
t

= 6σ2
T0

∑
i=1

η2
t + 6σ2

T

∑
i=T0+1

η2
t

=
6σ2

16L2

T0

∑
i=1

t2 + 6σ2η2
T

∑
i=T0+1

1
t

≤ 6σ2

16L2 T3
0 + 6σ2η2

T

∑
i=T0+1

1
t

≤ 6σ2η2
T

∑
i=1

1
t
≤ 6σ2η2(1 + log T)

Hence

f (yT)− f (x∗) ≤ 2
T1/2η

(
2Dψ (x∗, z0) + 12

(
G2 +

(
1 + log

(
1
δ

))
σ2
)

η2(1 + log T)
)

and

Dψ (x∗, zT) ≤ 2Dψ (x∗, z0) + 12
(

G2 +

(
1 + log

(
1
δ

))
σ2
)

η2(1 + log T)
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Overall we have

f (yT)− f (x∗) ≤ 16L
T2 Dψ (x∗, z0) +

2
T1/2η

(
2Dψ (x∗, z0) + 12

(
G2 +

(
1 + log

(
1
δ

))
σ2
)

η2(1 + log T)
)

.

4.5 Missing Proofs from Section 4.2

Proof of Lemma 4.2.2. We start from the smoothness of f

f (xt+1)− f (xt) ≤ ⟨∇ f (xt), xt+1 − xt⟩+
L
2
∥xt+1 − xt∥2

= −ηt

〈
∇ f (xt), ∇̂ f (xt)

〉
+

Lη2
t

2

∥∥∥∇̂ f (xt)
∥∥∥2

.

By writing ∇̂ f (xt) = ξt +∇ f (xt) we have

f (xt+1)− f (xt) ≤ −ηt ⟨∇ f (xt), ξt +∇ f (xt)⟩+
Lη2

t
2
∥ξt +∇ f (xt)∥2

= −ηt ∥∇ f (xt)∥2 − ηt ⟨∇ f (xt), ξt⟩

+
Lη2

t
2
∥ξt∥2 +

Lη2
t

2
∥∇ f (xt)∥2 + Lη2

t ⟨∇ f (xt), ξt⟩ .

We obtain the inequality (4.7) by rearranging the terms.

Proof of Theorem 4.2.3. We prove by induction. The base case t = T + 1 trivially
holds. Consider 1 ≤ t ≤ T, we have

E [exp (St) | Ft] = E [E [exp (Zt + St+1) | Ft+1] | Ft]

= E [exp (Zt)E [exp (St+1) | Ft+1] | Fk]

From the induction hypothesis we have E [exp (St+1) | Ft+1] ≤ exp
(

3σ2 ∑T
i=t+1

wiη
2
i L

2

)
,

hence

E [exp (St) | Ft] ≤ exp

(
3σ2

T

∑
i=t+1

wiη
2
i L

2

)
E [exp (Zt) | Ft]
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We have then

E [exp (Zt) | Ft]

= E

[
exp

(
wt

(
ηt

(
1− ηtL

2

)
∥∇ f (xt)∥2 + ∆t+1 − ∆t

)
− vt ∥∇ f (xT)∥2

)
| Ft

]
≤ E

[
exp

(
wt

(
ηt(ηtL− 1) ⟨∇ f (xt), ξt⟩+

η2
t L
2
∥ξt∥2

)
− vt ∥∇ f (xt)∥2

)
| Ft

]
= exp

(
−vt ∥∇ f (xt)∥2

)
E

[
exp

(
wt

(
ηt(ηtL− 1) ⟨∇ f (xt), ξt⟩+

η2
t L
2
∥ξt∥2

))
| Ft

]
≤ exp

(
−vt ∥∇ f (xt)∥2

)
exp

(
3σ2

(
w2

t η2
t (ηtL− 1)2 ∥∇ f (xt)∥2 +

wtη
2
t L

2

))
= exp

(
3σ2 wtη

2
t L

2

)
.

where the second line is due to (4.7) in Lemma 4.2.2 and the second to last line is due
to Lemma 4.3.2.Therefore

E [exp (St) | Ft] ≤ exp

(
3σ2

T

∑
i=t

wiη
2
i L

2

)

which we what we need to show.

Proof of Corollary 4.2.4. In Lemma 4.2.3, Let t = 1 we obtain

E [exp (S1)] ≤ exp

(
3σ2

T

∑
t=1

wtη
2
t L

2

)

hence by Markov’s inequality we have

Pr

[
S1 ≥

(
3σ2

T

∑
t=1

wtη
2
t L

2

)
+ log

1
δ

]
≤ δ

In other words, with probability ≥ 1− δ (once the condition in Lemma 4.2.3 is satis-
fied)

T

∑
t=1

[
wtηt

(
1− ηtL

2

)
− vt

]
∥∇ f (xt)∥2 + wt (∆t+1 − ∆t)

≤ 3σ2
T

∑
t=1

wtη
2
t L

2
+ log

1
δ

This gives

T

∑
t=1

[
wtηt

(
1− ηtL

2

)
− vt

]
∥∇ f (xt)∥2 + wT∆T+1

≤ w1∆1 +

(
T

∑
t=2

(wt − wt−1)∆t + 3σ2
T

∑
t=1

wtη
2
t L

2

)
+ log

1
δ

as needed.

Proof of Theorem 4.2.1 . First case.
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Starting from this inequality, we will specify the choice of ηt and wt to obtain the
bound. Consider ηt = η with ηL ≤ 1, wt = w = 1

6σ2η
. Note that wtη

2
t L = ηL

6σ2 ≤ 1
2σ2

satisfies the condition of Lemma 4.2.3, we have

LHS of (4.9) = w∆T+1 +
T

∑
t=1

[
wη

(
1− ηL

2

)
− 3σ2w2η2(ηL− 1)2

]
∥∇ f (xt)∥2

= w∆T+1 + wη
T

∑
t=1

[
1− ηL

2
− 1

2
(ηL− 1)2

]
∥∇ f (xt)∥2

≥ w∆T+1 +
wη

2

T

∑
t=1
∥∇ f (xt)∥2 ,

where the last inequality is due to 1− ηL
2 −

(1−ηL)2

2 ≥ 1
2 when 0 ≤ ηL ≤ 1. Besides,

RHS of (4.9) =w∆1 +
3σ2

2
wη2LT + log

1
δ

.

Hence with probability ≥ 1− δ

T

∑
t=1
∥∇ f (xt)∥2 +

2∆T+1

η
≤ 2∆1

η
+ 3σ2ηLT +

2
wη

log
1
δ

=
2∆1

η
+ 3σ2ηLT + 12σ2 log

1
δ

.

Finally by choosing η = min
{

1
L ;
√

∆1
σ2LT

}
and noticing ∆T+1 ≥ 0, we obtain the

desired inequality.
Second case.
Consider ηt =

η√
t

with ηL ≤ 1, wt = w = 1
6σ2η

. Again, we have wtη
2
t L = ηL

6σ2t ≤
1

2σ2 , then

LHS of (4.9) =
T

∑
t=1

[
wη√

t

(
1− ηL

2
√

t

)
− 3σ2w2η2

t

(
1− ηL√

t

)2
]
∥∇ f (xt)∥2 + w∆T+1

=
T

∑
t=1

wη√
t

[
1− ηL

2
√

t
− 3σ2wη√

t

(
1− ηL√

t

)2
]
∥∇ f (xt)∥2 + w∆T+1

≥
T

∑
t=1

wη√
t

[
1− ηL

2
√

t
− 3σ2wη

(
1− ηL√

t

)2
]
∥∇ f (xt)∥2 + w∆T+1

=
T

∑
t=1

wη√
t

[
1− ηL

2
√

t
− 1

2

(
1− ηL√

t

)2
]
∥∇ f (xt)∥2 + w∆T+1

≥
T

∑
t=1

wη

2
√

t
∥∇ f (xt)∥2 + w∆T+1 ≥

wη

2
√

T

T

∑
t=1
∥∇ f (xt)∥2 + w∆T+1
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where the second inequality is due to 1− ηL
2
√

t
− 1

2

(
1− ηL√

t

)2
≥ 1

2 when 0 ≤ ηL√
t
≤ 1.

Besides,

RHS of (4.9) =w∆1 +
3σ2

2
wη2L

T

∑
t=1

1
t
+ log

1
δ

≤w∆1 +
3σ2

2
wη2L(1 + log T) + log

1
δ

Therefore with probability ≥ 1− δ

T

∑
t=1
∥∇ f (xt)∥2 +

2
√

T∆T+1

η

≤
√

T
(

2∆1

η
+ 3σ2ηL (1 + log T) +

2
wη

log
1
δ

)
=
√

T
(

2∆1

η
+ 3σ2ηL (1 + log T) + 12σ2 log

1
δ

)
Choose η = 1

L , and notice ∆T+1 ≥ 0, we obtain

1
T

T

∑
t=1
∥∇ f (xt)∥2 ≤

2∆1L + 3σ2 (1 + log T) + 12σ2 log 1
δ√

T
.

4.6 AdaGrad-Norm Omitted Proofs

We first provide the proofs for some of the Lemmas in Section 4.2.2.

Proof of Lemma 4.2.7. We start by using the smoothness of f

f (xt+1)− f (xt) (4.20)

≤ ⟨∇ f (xt), xt+1 − xt⟩+
L
2
∥xt+1 − xt∥2

= − η

bt

〈
∇ f (xt), ∇̂ f (xt)

〉
+

Lη2

2b2
t

∥∥∥∇̂ f (xt)
∥∥∥2

= − η

bt
∥∇ f (xt)∥2 − η

bt
⟨∇ f (xt), ξt⟩+

Lη2

2b2
t

∥∥∥∇̂ f (xt)
∥∥∥2

= η

(
1
at
− 1

bt

)
⟨∇ f (xt), ξt⟩ −

η

at
⟨∇ f (xt), ξt⟩ −

η

bt
∥∇ f (xt)∥2 +

Lη2

2b2
t

∥∥∥∇̂ f (xt)
∥∥∥2

(4.21)

First, by Lemma 4.6.2, we have ∣∣∣∣ 1
at
− 1

bt

∣∣∣∣ ≤ ∥ξt∥
atbt

.
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This gives (
1
at
− 1

bt

)
⟨∇ f (xt), ξt⟩ ≤

∣∣∣∣ 1
at
− 1

bt

∣∣∣∣ ∥∇ f (xt)∥ ∥ξt∥

≤ ∥ξt∥
atbt
∥∇ f (xt)∥ ∥ξt∥

≤ ∥ξt∥
(
∥∇ f (xt)∥2

2a2
t

+
∥ξt∥2

2b2
t

)
.

Plugging this back into 4.21, we have

f (xt+1)− f (xt) ≤ η ∥ξt∥
(
∥∇ f (xt)∥2

2a2
t

+
∥ξt∥2

2b2
t

)
− η ⟨∇ f (xt), ξt⟩

at
− η

bt
∥∇ f (xt)∥2 +

Lη2

2b2
t

∥∥∥∇̂ f (xt)
∥∥∥2

After summing up, rearranging the terms, using ∥ξt∥ ≤ MT and f (x1)− f (xT+1) ≤
∆1, we obtain

T

∑
t=1

∥∇ f (xt)∥2

bt
≤ ∆1

η
+

MT

2

[
T

∑
t=1

∥∇ f (xt)∥2

a2
t

+
T

∑
t=1

∥ξt∥2

b2
t

]
−

T

∑
t=1

⟨∇ f (xt), ξt⟩
at

+
T

∑
t=1

Lη

2b2
t

∥∥∥∇̂ f (xt)
∥∥∥2

.

Proof of Lemma 4.2.8. By Lemma 4.3.2 with some w > 0, we have

E

[
exp

(〈
−w
∇ f (xt), ξt

at

〉
− 2σ2w2 ∥∇ f (xt)∥2

a2
t

)
| Ft

]
≤ 1.

Thus it is not difficult to verify that

E

[
exp

(
T

∑
t=1

〈
−w
∇ f (xt), ξt

at

〉
− 2σ2w2 ∥∇ f (xt)∥2

a2
t

)]
≤ 1.

By Markov’s inequality we obtain, with probability at least 1− δ,

T

∑
t=1
−⟨∇ f (xt), ξt⟩

at
≤ 2σ2w

T

∑
t=1

∥∇ f (xt)∥2

a2
t

+
1
w

log
1
δ

.

It is also known that with probability at least 1− δ, MT ≤ σ
√

1 + log T
δ ≤ 2σ

√
log T

δ

Li and Orabona (2020) and Liu et al. (2022) for T ≥ 1 and δ ∈ (0, 1). Thus by a union

bound and setting w :=
√

log 1
δ

σ , we can bound Lemma 4.2.7 with probability at least



Chapter 4. Light-Tailed Noise: (Accelerated) SMD, SGD, and AdaGrad 47

1− 2δ

T

∑
t=1

∥∇ f (xt)∥2

bt

≤ ∆1

η
+ MT

T

∑
t=1

∥∇ f (xt)∥2

2a2
t

+ MT

T

∑
t=1

∥ξt∥2

2b2
t
−

T

∑
t=1

⟨∇ f (xt), ξt⟩
at

+
T

∑
t=1

Lη

2b2
t

∥∥∥∇̂ f (xt)
∥∥∥2

≤ ∆1

η
+ σ

√
log

T
δ

2
T

∑
t=1

∥∇ f (xt)∥2

a2
t︸ ︷︷ ︸

B

+
T

∑
t=1

∥ξt∥2

b2
t

+ σ

√
log

1
δ
+

Lη

2

T

∑
t=1

∥∥∥∇̂ f (xt)
∥∥∥2

b2
t︸ ︷︷ ︸

A

.

Let us consider the term A. We have

T

∑
t=1

∥∥∥∇̂ f (xt)
∥∥∥2

b2
t

=
T

∑
t=1

b2
t − b2

t−1

b2
t

=
T

∑
t=1

1−
b2

t−1

b2
t

≤ 2
T

∑
t=1

log
bt

bt−1
= 2 log

bT

b0
.

For B, note that since ∥∇ f (xt)∥2 ≤ 2
∥∥∥∇̂ f (xt)

∥∥∥2
+ 2 ∥ξt∥2, we have

T

∑
t=1

∥∇ f (xt)∥2

a2
t

=
T

∑
t=1

∥∇ f (xt)∥2

b2
t−1 + ∥∇ f (xt)∥2

(∗)
≤

T

∑
t=1

2
∥∥∥∇̂ f (xt)

∥∥∥2
+ 2 ∥ξt∥2

b2
t−1 + 2

∥∥∥∇̂ f (xt)
∥∥∥2

+ 2 ∥ξt∥2

=
T

∑
t=1

2
∥∥∥∇̂ f (xt)

∥∥∥2

b2
t−1 + 2

∥∥∥∇̂ f (xt)
∥∥∥2

+ 2 ∥ξt∥2
+

T

∑
t=1

2 ∥ξt∥2

b2
t−1 + 2

∥∥∥∇̂ f (xt)
∥∥∥2

+ 2 ∥ξt∥2

≤ 2
T

∑
t=1

∥∥∥∇̂ f (xt)
∥∥∥2

b2
t

+ 2
T

∑
t=1

∥ξt∥2

b2
t

≤ 4 log
(

bT

b0

)
+ 2

T

∑
t=1

∥ξt∥2

b2
t

.

For (∗) we use the fact that x
c+x is an increasing function. Combining the bound for

A and B, we obtain, with probability at least 1− 2δ,

T

∑
t=1

∥∇ f (xt)∥2

bt
≤ ∆1

η
+ σ

√
log

T
δ

[
8 log

(
bT

b0

)
+ 5

T

∑
t=1

∥ξt∥2

b2
t

]
+ σ

√
log

1
δ
+ Lη log

bT

b0
.
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Lemma 4.6.1. For AdaGrad-Norm stepsizes bt, if f is L-smooth and the stochastic gradients
have σ-subgaussian noise, then with probability at least 1− δ

bT ≤ 4b0 + 4
∆1

η
+

32
η2b0

σ2 ln
(

2
δ

)
+

16σ

η2

√
T + log

2
δ
+ 4Lη log

Lη

b0

= O
(

∆1 + σ
√

T + σ2 log
1
δ
+ L log L

)
.

Proof. We start from function value analysis

f (xt+1)− f (xt) ≤ ⟨∇ f (xt), xt+1 − xt⟩+
L
2
∥xt+1 − xt∥2

=
1
bt

〈
∇̂ f (xt), ξt

〉
+ η

(
Lη

2b2
t
− 1

2bt

)∥∥∥∇̂ f (xt)
∥∥∥2
− η

2bt

∥∥∥∇̂ f (xt)
∥∥∥2

.

We can bound ∑T
t=1

(
Lη

2b2
t
− 1

2bt

) ∥∥∥∇̂ f (xt)
∥∥∥2

via a standard argument. Let τ = max {t ≤ T | bt ≤ ηL}
so that t ≥ τ implies bt ≥ ηL ⇐⇒ Lη

b2
t
≤ 1

bt
. Then

T

∑
t=1

(
Lη

2b2
t
− 1

2bt

)∥∥∥∇̂ f (xt)
∥∥∥2
≤

τ

∑
t=1

(
Lη

2b2
t
− 1

2bt

)∥∥∥∇̂ f (xt)
∥∥∥2

≤ Lη

2

τ

∑
t=1

1
b2

t

∥∥∥∇̂ f (xt)
∥∥∥2

= Lη log
bτ

b0
≤ Lη log

Lη

b0
.

Summing and plugging in the above gives

f (xT+1)− f (x1) ≤
T

∑
t=1

1
bt

〈
∇̂ f (xt), ξt

〉
+ Lη2 log

Lη

b0
− η

2

T

∑
t=1

∥∥∥∇̂ f (xt)
∥∥∥2

bt

≤ 1
η

T

∑
t=1

∥ξt∥2

bt
− η

4

T

∑
t=1

∥∥∥∇̂ f (xt)
∥∥∥2

bt
+ Lη2 log

Lη

b0
,

where we use 1
bt

〈
∇̂ f (xt), ξt

〉
≤ ∥ξt∥2

ηbt
+

η∥∇̂ f (xt)∥2

4bt
in the second inequality. Rear-

ranging and dividing by η, we get

T

∑
t=1

∥∥∥∇̂ f (xt)
∥∥∥2

4bt
≤ f (x1)− f (xT+1)

η
+

1
η2

T

∑
t=1

∥ξt∥2

bt
+ Lη log

Lη

b0
.

On the LHS, we have

T

∑
t=1

∥∥∥∇̂ f (xt)
∥∥∥2

bt
=

T

∑
t=1

b2
t − b2

t−1

bt
≥

T

∑
t=1

bt −
b2

t−1

bt−1
= bT − b0.

Combining this with Lemma 4.6.5 where ∑T
t=1

∥ξt∥2

bt
≤ 8

b0
σ2 ln

( 2
δ

)
− b0 + 4σ

√
T + log 2

δ ,
we get the result.
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Now, we can prove Theorem 4.2.5.

Proof of Theorem 4.2.5. From Lemma 4.2.8, we have with probability at least 1− 2δ

T

∑
t=1

∥∇ f (xt)∥2

bt
≤ ∆1

η
+σ

√
log

T
δ

[
8 log

(
bT

b0

)
+ 5

T

∑
t=1

∥ξt∥2

b2
t

]
+σ

√
log

1
δ
+ Lη log

bT

b0
.

Since bt is increasing, we have ∑T
t=1

∥∇ f (xt)∥2

bt
≥ ∑T

t=1
∥∇ f (xt)∥2

bT
. That means

T

∑
t=1
∥∇ f (xt)∥2 ≤ bT

[
∆1

η
+ σ

√
log

T
δ

[
8 log

(
bT

b0

)
+ 5

T

∑
t=1

∥ξt∥2

b2
t

]
+ σ

√
log

1
δ
+ Lη log

(
bT

b0

)]
.

Combining this with the event from Lemma 4.6.6 that bounds ∑T
t=1

∥ξt∥2

b2
t

and Lemma
4.6.1 that bounds bT gives us the Theorem.

4.6.1 Additional Helper Lemmas

Lemma 4.6.2. For t ≥ 1 and at, ξt defined in Lemma 4.2.7, we have∣∣∣∣ 1
at
− 1

bt

∣∣∣∣ ≤ ∥ξt∥
atbt

.

Proof. We have∣∣∣∣ 1
at
− 1

bt

∣∣∣∣ = ∣∣∣∣bt − at

atbt

∣∣∣∣
=

∣∣∣∣ b2
t − a2

t
atbt (bt + at)

∣∣∣∣
=

∣∣∣∣∣b2
t − b2

t−1 − ∥∇ f (xt)∥2

atbt (bt + at)

∣∣∣∣∣
=

∣∣∣∣∣∣∣
∥∥∥∇̂ f (xt)

∥∥∥2
− ∥∇ f (xt)∥2

atbt (bt + at)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣
(∥∥∥∇̂ f (xt)

∥∥∥− ∥∇ f (xt)∥
) (∥∥∥∇̂ f (xt)

∥∥∥+ ∥∇ f (xt)∥
)

atbt (bt + at)

∣∣∣∣∣∣ .

Since bt =

√
b2

t−1 +
∥∥∥∇̂ f (xt)

∥∥∥2
≥
∥∥∥∇̂ f (xt)

∥∥∥ and at =
√

b2
t−1 + ∥∇ f (xt)∥2 ≥ ∥∇ f (xt)∥,

we have ∣∣∣∣ 1
at
− 1

bt

∣∣∣∣ ≤
∣∣∣∣∣∣
∥∥∥∇̂ f (xt)

∥∥∥− ∥∇ f (xt)∥
atbt

∣∣∣∣∣∣
≤

∥∥∥∇̂ f (xt)−∇ f (xt)
∥∥∥

atbt

=
∥ξt∥
atbt

.
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Lemma 4.6.3. With prob ≥ 1− δ, for any 0 ≤ t ≤ T, we have

t

∑
s=1
∥ξs∥2 ≤

t

∑
s=1
∥∇̂ f (xs)∥2 + 4σ2 log

1
δ

.

Proof. Note that

∥∇̂ f (xt)∥2 = ∥∇ f (xt)∥2 + 2⟨ξt,∇ f (xt)⟩+ ∥ξt∥2

⇒ ∥∇ f (xt)∥ − ∥∇̂ f (xt)∥2 + ∥ξt∥2 = 2⟨ξt,∇ f (xt)⟩.

Define for t ∈ {0, 1, · · · , T}

Ut+1 = exp

(
t

∑
s=1

ws

(
∥∇ f (xs)∥2 − ∥∇̂ f (xs)∥2 + ∥ξs∥2

)
− vs∥∇ f (xs)∥2

)
; vs = 4σ2w2

s .

Let Ft = σ(ξi≤t−1). We know Ut ∈ Ft. Note that Ut is a supermartingale

E [Ut+1 | Ft] = Ut exp
(
−vt∥∇ f (xt)∥2)E [exp (2wt⟨ξt,∇ f (xt)⟩) | Ft]

≤ Ut exp
(
−vt∥∇ f (xt)∥2)E

[
exp

(
4σ2w2

t ∥∇ f (xt)∥2) | Ft
]

= Ut

By Doob’s supermartingale inequality, there is

Pr
[

max
t∈[T+1]

Ut ≥ δ−1
]
≤ δE [U1] = δ

which implies w.p. ≥ 1− δ, ∀0 ≤ t ≤ T

t

∑
s=1

ws

(
∥∇ f (xs)∥2 − ∥∇̂ f (xs)∥2 + ∥ξs∥2

)
− vs∥∇ f (xs)∥2 ≤ log

1
δ

t

∑
s=1

(
ws − 4σ2w2

s
)
∥∇ f (xs)∥2 + ws∥ξs∥2 ≤

t

∑
s=1

ws∥∇̂ f (xs)∥2 + log
1
δ

.

Set ws =
1

4σ2 to get

t

∑
s=1
∥ξs∥2 ≤

t

∑
s=1
∥∇̂ f (xs)∥2 + 4σ2 log

1
δ

.

Lemma 4.6.4. With probability ≥ 1− δ, we have

T

∑
t=1
∥ξt∥2 ≤ σ2T + σ2 log

1
δ

.
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Proof. Note that

Pr

[
T

∑
t=1
∥ξt∥2 ≥ u

]
= Pr

[
exp

(
T

∑
t=1

∥ξt∥2

σ2

)
≥ exp

( u
σ2

)]

≤
E
[
exp

(
∑T

t=1
∥ξt∥2

σ2

)]
exp

( u
σ2

)
≤ exp(T)

exp
( u

σ2

)
where we choose

u = σ2T + σ2 log
1
δ

.

Lemma 4.6.5. For AdaGrad stepsize bt and σ-subgaussian noise ∥ξt∥, with probability at
least 1− δ

T

∑
t=1

∥ξt∥2

bt
≤ 8

b0
σ2 ln

(
2
δ

)
− b0 + 4σ

√
T + log

2
δ

.

Proof. First, Lemma 4.6.3 gives that with probability at least 1− δ, for all t ≤ T

t

∑
i=1
∥ξi∥2 ≤

t

∑
i=1

∥∥∥∇̂ f (xi)
∥∥∥2

+ 4σ2 ln
(

1
δ

)
= b2

t − b2
0 + 4σ2 ln

(
1
δ

)
=⇒ b2

t ≥
t

∑
i=1
∥ξi∥2 −

[
4σ2 ln

(
1
δ

)
− b2

0

]
︸ ︷︷ ︸

=:C

.

This means that

bt ≥ max

b0,

√√√√( t

∑
i=1
∥ξi∥2 − C

)+
 .
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Let τ = max
(
{0} ∪

{
t ∈N≤T | ∑t

i=1 ∥ξi∥2 ≤ 2C
})

. Then

T

∑
t=1

1
bt
∥ξt∥2 ≤

τ

∑
t=1

1
bt
∥ξt∥2 +

T

∑
t=τ+1

1
bt
∥ξt∥2

≤ 1
b0

τ

∑
t=1
∥ξt∥2 +

T

∑
t=τ+1

∥ξt∥2

max
{

b0,
√

∑t
i=1 ∥ξi∥2 − C

}
≤ 2C

b0
+

T

∑
t=τ+1

∥ξt∥2√
∑t

i=1 ∥ξi∥2 − C

≤ 2C
b0

+
T

∑
t=τ+1

∥ξt∥2√
1
2 ∑t

i=1 ∥ξi∥2
(since) (∑t

i=1 ∥ξi∥2 > 2C for t > τ)

≤ 2C
b0

+ 2
T

∑
t=1

∥ξt∥2√
∑t

i=1 ∥ξi∥2

≤ 2C
b0

+ 4

√√√√ T

∑
t=1
∥ξt∥2.

Hence, with probability at least 1− δ,

T

∑
t=1

∥ξt∥2

bt
≤ 8

b0
σ2 ln

(
1
δ

)
− b0 + 4

√√√√ T

∑
t=1
∥ξt∥2.

Combining with Lemma 4.6.4, we get with probability at least 1− 2δ

T

∑
t=1

∥ξt∥2

bt
≤ 8

b0
σ2 ln

(
1
δ

)
− b0 + 4σ

√
T + log

1
δ

.

Lemma 4.6.6. For AdaGrad-Norm stepsize bt and σ-subgaussian noise ∥ξt∥, with proba-
bility at least 1− δ,

T

∑
t=1

∥ξt∥2

b2
t
≤ 4σ2

b2
0

log
(

2
δ

)
+ 2 log

(
1 + σ2T + σ2 log

2
δ

)
= O

(
σ2 log

(
1
δ

)
+ log

(
1 + σ2T + σ2 log

1
δ

))
.

Proof. Lemma 4.6.3 gives that with probability at least 1− δ
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t

∑
i=1
∥ξi∥2 ≤

t

∑
i=1

∥∥∥∇̂ f (xi)
∥∥∥2

+ 4σ2 ln
(

1
δ

)
= b2

t − b2
0 + 4σ2 ln

(
1
δ

)
=⇒ b2

t ≥
t

∑
i=1
∥ξi∥2 −

[
4σ2 ln

(
1
δ

)
− b2

0

]
︸ ︷︷ ︸

=:C

.

Let τ = max
(
{0} ∪

{
t ∈N≤T | ∑t

i=1 ∥ξi∥2 ≤ 2C
})

. We have

T

∑
t=1

∥ξt∥2

b2
t
≤

τ

∑
t=1

∥ξt∥2

b2
t

+
T

∑
t=τ+1

∥ξt∥2

b2
t

≤ 1
b2

0

τ

∑
t=1
∥ξt∥2 +

T

∑
t=τ+1

∥ξt∥2

∑t
i=1 ∥ξi∥2 − C

(
(

since ∑t
i=1 ∥ξi∥2 > 2C for t > τ

)
)

≤ 2C
b2

0
+ 2

T

∑
t=τ+1

∥ξt∥2

∑t
i=1 ∥ξi∥2

≤ 2C
b2

0
+ 2

T

∑
t=1

∥ξt∥2

∑t
i=1 ∥ξi∥2

≤ 2C
b2

0
+ 2 + 2 log

(
1 +

T

∑
t=1
∥ξt∥2

)

=
4σ2

b2
0

log
(

1
δ

)
+ 2 log

(
1 +

T

∑
t=1
∥ξt∥2

)
.

Then, we can combine this with Lemma 4.6.4 to get that with probability at least
1− 2δ

T

∑
t=1

∥ξt∥2

b2
t
≤ 4σ2

b2
0

log
(

1
δ

)
+ 2 log

(
1 + σ2T + σ2 log

1
δ

)
.

Replacing δ with δ/2 yields the result.

4.7 AdaGrad (Coordinate) Analysis

In this section, we show that our same technique can be generalized to the standard
(per-coordinate) version of AdaGrad. The analysis is analogous to our AdaGrad-
norm analysis but with the coordinates taken into account.

4.7.1 Preliminaries and notations

Let d ∈N be the dimension of the problem. We let vi denote the i-th coordinate of a
vector v ∈ Rd. If a vector like xt is already indexed as part of a sequence of vectors
(where xt denotes the t-th update) then we use xt,i to denote xt’s i-th coordinate. For
gradients, we let ∇i f (x) := ∂ f

∂xi
denote the partial derivative wrt the i-th coordinate.

Similarly, for stochastic gradients ∇̂ f (x), we let ∇̂i f (x) denotes its i-th coordinate.
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For simplicity, in our analysis, we will use ∇̂t,i := ∇̂i f (xt) and ∇t,i := ∇i f (xt)
to denote the i-th coordinate of the stochastic gradients and gradients at iterate t,
respectively. If a, b ∈ Rd, then ab and a/b denotes coordinate-wise multiplication
and division, respectively i.e. (ab)i = aibi and (a/b)i = ai/bi.

If we denote the noise as ξt := ∇̂ f (xt)−∇ f (xt) and ξt,i as the i-th coordinate of
ξt, then we assume the noise is per-coordinate sub-gaussian i.e. there exists σi > 0
for i ∈ [d] such that ξt satisfies

E
[
exp

(
λ2ξ2

t,i
)]
≤ exp

(
λ2σ2

i
)

, ∀ |λ| ≤ 1
σi

, ∀i ∈ [d] .

Note that ∥ξt∥ being σ-subgaussian implies that each ξt,i is also σ-subgaussian,
thus the assumption above is more general.

4.7.2 Analysis

Similarly to our Adagrad-norm analysis in Section 4.6, we define a proxy step size at
that replaces the stochastic gradient at time t with the true gradient: a2

t,i := b2
t−1,i +

∇2
t,i, for i ∈ [d]. First, we present an analogous starting point to Lemma 4.2.7 in the

Lemma below:

Lemma 4.7.1. For t ≥ 1, let ξt,i = ∇̂t,i−∇t,i, a2
t,i := b2

t−1,i +∇2
t,i and Mt,i = maxj≤t

∣∣ξ j,i
∣∣,

then we have

T

∑
t=1

d

∑
i=1

∇2
t,i

bt,i
≤ ∆1

η
−

T

∑
t=1

d

∑
i=1

∇t,iξt,i

at,i
+

T

∑
t=1

d

∑
i=1
|ξt,i|

[
∇2

t,i

2a2
t,i
+

ξ2
t,i

2b2
t,i

]
+

ηL
2

T

∑
t=1

d

∑
i=1

∇̂2
t,i

b2
t,i

.

Proof. We start with the smoothness of f

∆t+1 − ∆t ≤ ⟨∇ f (xt), xt+1 − xt⟩+
L
2
∥xt+1 − xt∥2

= −η
d

∑
i=1

∇t,i∇̂t,i

bt,i
+

η2L
2

d

∑
i=1

∇̂2
t,i

b2
t,i

= −η
d

∑
i=1

∇2
t,i

bt,i
− η

d

∑
i=1

∇t,iξt,i

bt,i
+

η2L
2

d

∑
i=1

∇̂2
t,i

b2
t,i

= −η
d

∑
i=1

∇2
t,i

bt,i
− η

d

∑
i=1

∇t,iξt,i

at,i
+ η

d

∑
i=1

(
1

at,i
− 1

bt,i

)
∇t,iξt,i +

η2L
2

d

∑
i=1

∇̂2
t,i

b2
t,i

.

Similarly to Lemma 4.6.2, we have:∣∣∣∣ 1
at,i
− 1

bt,i

∣∣∣∣ ≤ |ξt,i|
at,ibt,i

.
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Then

∆t+1 − ∆t ≤ −η
d

∑
i=1

∇2
t,i

bt,i
− η

d

∑
i=1

∇t,iξt,i

at,i
+ η

d

∑
i=1

(
1

at,i
− 1

bt,i

)
∇t,iξt,i +

η2L
2

d

∑
i=1

∇̂2
t,i

b2
t,i

≤ −η
d

∑
i=1

∇2
t,i

bt,i
− η

d

∑
i=1

∇t,iξt,i

at,i
+ η

d

∑
i=1

|ξt,i|
at,ibt,i

|∇t,iξt,i|+
η2L

2

d

∑
i=1

∇̂2
t,i

b2
t,i

≤ −η
d

∑
i=1

∇2
t,i

bt,i
− η

d

∑
i=1

∇t,iξt,i

at,i
+ η

d

∑
i=1
|ξt,i|

[
∇2

t,i

2a2
t,i
+

ξ2
t,i

2b2
t,i

]
+

η2L
2

d

∑
i=1

∇̂2
t,i

b2
t,i

.

Rearranging and summing give us the Lemma.

Next, we present an analogous per-coordinate result to Lemma 4.6.

Lemma 4.7.2. With MT,i = maxt≤T |ξt,i| , σmax = maxi∈[d] σi, and for any w > 0, we
have with probability at least 1− 2dδ

1
∥bT∥1

T

∑
t=1
∥∇ f (xt)∥2

1 ≤
∆1

η
+ dσmax

√
log

1
δ
+

(
8 ∥σ∥1

√
log

T
δ
+ dηL

)
log
(
∥bT∥1

min b0,i

)
+

d

∑
i=1

6σi

√
log

T
δ

T

∑
t=1

ξ2
t,i

b2
t,i

.

Proof. We first take care of the term ∑T
t=1 ∑d

i=1
∇̂2

t,i
b2

t,i
from Lemma 4.7.1:

T

∑
t=1

d

∑
i=1

∇̂2
t,i

b2
t,i

=
d

∑
i=1

T

∑
t=1

∇̂2
t,i

b2
t,i

=
d

∑
i=1

T

∑
t=1

b2
t,i − b2

t−1,i

b2
t,i

≤
d

∑
i=1

2 log
bT,i

b0,i
.

Next, we deal with −∑T
t=1 ∑d

i=1
∇t,iξt,i

at,i
via our martingale argument. For any w > 0,

we have for each i ∈ [d]:

E

[
exp

(
−w
∇t,iξt,i

at,i
− 2w2 σ2

i ∇2
t,i

a2
t,i

)
| Ft

]
= exp

(
−2w2 σ2

i ∇2
t,i

a2
t,i

)
E

[
exp

(
−w
∇t,iξt,i

at,i

)
| Ft

]
≤ 1.

Then a simple inductive argument gives with probability at least 1− δ:

−w
T

∑
t=1

∇t,iξt,i

at,i
≤ 2w2

T

∑
t=1

σ2
i ∇2

t,i

a2
t,i

+ log
1
δ

.

By a union bound across all coordinate d, we have w.p. at least 1− dδ:

−
T

∑
t=1

d

∑
i=1

∇t,iξt,i

at,i
≤

T

∑
t=1

d

∑
i=1

wσ2
i ∇2

t,i

a2
t,i

+
d
w

log
1
δ

. (4.22)

Let’s call the event that (4.22) happens E1. Now, we deal with ∑T
t=1 ∑d

i=1
∇2

t,i
a2

t,i
. Note

that

∇2
t,i

a2
t,i

=
∇2

t,i

b2
t−1,i +∇2

t,i + σ2
i
≤

2∇̂2
t,i + 2ξ2

t,i

b2
t−1,i + 2∇̂2

t,i + 2ξ2
t,i + σ2

i

≤ 2
∇̂2

t,i

b2
t,i

+ 2
ξ2

t,i

b2
t,i

.
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Under the even E1 and the above result, we can bound Lemma 4.7.1 with probability
at least 1− dδ:

T

∑
t=1

d

∑
i=1

∇2
t,i

bt,i

≤ ∆1

η
+ w

T

∑
t=1

d

∑
i=1

σ2
i ∇2

t,i

a2
t,i

+
d
w

log
1
δ
+

T

∑
t=1

d

∑
i=1

MT,i

2

[
∇2

t,i

a2
t,i

+
ξ2

t,i

b2
t,i

]
+

ηL
2

d

∑
i=1

2 log
bT,i

b0,i

=
∆1

η
+

d
w

log
1
δ
+

T

∑
t=1

d

∑
i=1

(
2wσ2

i + MT,i
) ∇̂2

t,i

b2
t,i

+ 2
T

∑
t=1

d

∑
i=1

(
MT,i + wσ2

i
) ξ2

t,i

b2
t,i
+ ηL

d

∑
i=1

log
bT,i

b0,i

=
∆1

η
+

d
w

log
1
δ
+

d

∑
i=1

(
4wσ2

i + 2MT,i + ηL
)

log
bT,i

b0,i
+ 2

d

∑
i=1

(
MT,i + wσ2

i
) T

∑
t=1

ξ2
t,i

b2
t,i

.

Note that (
d

∑
i=1

∇2
t,i

bt,i

)(
d

∑
i=1

bt,i

)
≥
(

d

∑
i=1
∥∇t,i∥

)2

= ∥∇ f (xt)∥2
1

⇒
(

d

∑
i=1

∇2
t,i

bt,i

)
≥ ∥∇ f (xt)∥2

1
∥bt∥1

≥ ∥∇ f (xt)∥2
1

∥bT∥1
.

Hence, we have
1
∥bT∥1

T

∑
t=1
∥∇ f (xt)∥2

1 ≤
T

∑
t=1

d

∑
i=1

∇2
t,i

bt,i
.

Since it is known that with probability at least 1− δ, maxt∈[T] |ξt,i| ≤ σi

√
1 + log T

δ

for each i ∈ [d] Li and Orabona (2020) and Liu et al. (2022), a union bound over all d
gives us that w.p.≥ 1− dδ

MT,i ≤ 2σi

√
log

T
δ

, ∀i ∈ [d] . (4.23)

Condition under this event and choosing 1
w = σmax√

log 1
δ

gives us with probability at

least 1− 2dδ

1
∥bT∥1

T

∑
t=1
∥∇ f (xt)∥2

1 ≤
∆1

η
+ dσmax

√
log

1
δ
+

d

∑
i=1

(
4σ2

i
σmax

√
log

1
δ
+ 4σi

√
log

T
δ
+ ηL

)
log

bT,i

b0,i

+ 2
d

∑
i=1

(
2σi

√
log

T
δ
+

σ2
i

σmax

√
log

1
δ

)
T

∑
t=1

ξ2
t,i

b2
t,i

≤ ∆1

η
+ dσmax

√
log

1
δ
+

(
8 ∥σ∥1

√
log

T
δ
+ dηL

)
log
(
∥bT∥1

min b0,i

)
+

d

∑
i=1

6σi

√
log

T
δ

T

∑
t=1

ξ2
t,i

b2
t,i

.

Finally, it remains to bound ∥bT∥1 and ∑T
t=1

ξ2
t,i

b2
t,i

. For this we use Lemma 4.7.6 to

show the following bound on ∥bT∥1:
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Lemma 4.7.3. With probability at least 1− 2dδ

∥bT∥1 ≤ 2 ∥b0∥1 +
4∆1

η
+ log

(
2
δ

) d

∑
i=1

8σ2
i

b0,i
+ 4

d

∑
i=1

√
σ2

i T + σ2
i log

2
δ
+ 4η2L

d

∑
i=1

log
4η2L
b0,i

= O

(
∥σ∥1

√
T + ∥b0∥1 +

∆1

η
+

∥∥∥∥σ2

b0

∥∥∥∥
1

log
(

1
δ

)
+ ∥σ∥1

√
log

1
δ
+ η2L

d

∑
i=1

log
η2L
b0,i

)
.

Proof. We start via the smoothness of f

f (xt+1)− f (xt) ≤ ⟨∇ f (xt), xt+1 − xt⟩+
L
2
∥xt+1 − xt∥2

= − η

bt

〈
∇ f (xt), ∇̂ f (xt)

〉
+

η2L
2

d

∑
i=1

∇̂2
t,i

b2
t,i

= −η
d

∑
i=1

∇̂2
t,i

bt,i
+ η

d

∑
i=1

ξt,i∇̂t,i

bt,i
+

η2L
2

d

∑
i=1

∇̂2
t,i

b2
t,i

≤ −η

2

d

∑
i=1

∇̂2
t,i

bt,i
+

η

2

d

∑
i=1

ξ2
t,i

bt,i
+

η2L
2

d

∑
i=1

∇̂2
t,i

b2
t,i

.

Summing up over t we obtain

T

∑
t=1

d

∑
i=1

∇̂2
t,i

bt,i
≤ 2∆1

η
+

T

∑
t=1

d

∑
i=1

ξ2
t,i

bt,i
+

T

∑
t=1

d

∑
i=1

η2L
∇̂2

t,i

b2
t,i

≤ 2∆1

η
+

T

∑
t=1

d

∑
i=1

ξ2
t,i

bt,i
+

d

∑
i=1

2η2L log
bT,i

b0,i
.

Note that the LHS of the above inequality is lower-bounded by ∥bT∥1 − ∥b0∥1. Thus

∥bT∥1 − ∥b0∥1 ≤
2∆1

η
+

T

∑
t=1

d

∑
i=1

ξ2
t,i

bt,i
+

d

∑
i=1

2η2L log
bT,i

b0,i

≤ 2∆1

η
+

T

∑
t=1

d

∑
i=1

ξ2
t,i

bt,i
+

d

∑
i=1

2η2L
(

log
bT,i

4η2L
+ log

4η2L
b0,i

)
≤ 2∆1

η
+

T

∑
t=1

d

∑
i=1

ξ2
t,i

bt,i
+
∥bT∥1

2
+

d

∑
i=1

2η2L log
4η2L
b0,i

;

∥bT∥1 ≤ 2 ∥b0∥1 +
4∆1

η
+ 2

T

∑
t=1

d

∑
i=1

ξ2
t,i

bt,i
+ 4η2L

d

∑
i=1

log
4η2L
b0,i

.

Note that by Lemma 4.7.6, with probability at least 1− 2dδ

T

∑
t=1

d

∑
i=1

ξ2
t,i

bt,i
≤

d

∑
i=1

8σ2
i log 1

δ

b0,i
+ 4

√
σ2

i T + σ2
i log

1
δ

= O

(∥∥∥∥σ2

b0

∥∥∥∥
1

log
1
δ
+ ∥σ∥1

(√
log

1
δ
+
√

T

))
.
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Hence, under this event, we have that with probability at least 1− 2dδ

∥bT∥1 ≤ 2 ∥b0∥1 +
4∆1

η
+ O

(∥∥∥∥σ2

b0

∥∥∥∥
1

log
1
δ
+ ∥σ∥1

(√
log

1
δ
+
√

T

))
+ 4η2L ∑

i
log

4η2L
b0,i

.

Now we are ready to prove Theorem 4.2.6.

Proof of Theorem 4.2.6. Combining Lemma 4.7.1 with Lemma 4.7.6, we get with prob-
ability at least 1− 4dδ

1
∥bT∥1

T

∑
t=1
∥∇ f (xt)∥2

1 ≤
∆1

η
+ dσmax

√
log

1
δ
+

(
8 ∥σ∥1

√
log

T
δ
+ dηL

)
log
(
∥bT∥1

min b0,i

)
+

d

∑
i=1

6σi

√
log

T
δ

T

∑
t=1

ξ2
t,i

b2
t,i

.

≤ ∆1

η
+ dσmax

√
log

1
δ
+

(
8 ∥σ∥1

√
log

T
δ
+ dηL

)
log
(
∥bT∥1

min b0,i

)

+ 6

√
log

T
δ

d

∑
i=1

σi

(
8σ2

i
b2

0,i
log

1
δ
+ 2 log

(
1 +

σ2
i T + σ2

i log 1
δ

2b2
0,i

))
.

Rearranging, combining this with the bound for ∥bT∥1, and replacing δ with δ
6d yield

the Theorem.

4.7.3 Additional Helper Lemmas

Lemma 4.7.4. We have w.p. ≥ 1− dδ

τ

∑
t=1

ξ2
t,i ≤

τ

∑
t=1
∇̂2

t,i + 4σ2
i log

1
δ

, ∀τ ∈ [T] , ∀i ∈ [d] .

Proof. We apply Lemma 4.6.3 to each coordinate individually and then union bound
over all the dimensions to get the result.

Lemma 4.7.5. We have w.p.≥ 1− dδ

T

∑
t=1

ξ2
t,i ≤ σ2

i T + σ2
i log

1
δ

, ∀i ∈ [d] .

Proof. We apply Lemma 4.6.4 to each coordinate individually and then union bound
over all the dimensions to get the result.

We can show a bound on ∑T
t=1

ξ2
t,i

bt,i
and ∑T

t=1
ξ2

t,i
b2

t,i
for each i ∈ [d]:

Lemma 4.7.6. We have

1. With probability at least 1− 2dδ, we have for all i ∈ [d]

T

∑
t=1

ξ2
t,i

bt,i
≤

8σ2
i log 1

δ

b0,i
+ 4

√
σ2

i T + σ2
i log

1
δ

.
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2. With probability at least 1− 2dδ, we have for all i ∈ [d]

T

∑
t=1

ξ2
t,i

b2
t,i
≤

8σ2
i

b2
0,i

log
1
δ
+ 2 log

(
1 +

σ2
i T + σ2

i log 1
δ

2b2
0,i

)
.

Proof. For (1), we have with probability at least 1− 2dδ

T

∑
t=1

ξ2
t,i

bt,i
=

T

∑
t=1

ξ2
t,i√

b2
0,i + ∑t

s=1 ∇̂2
s,i

(1)
≤

T

∑
t=1

ξ2
t,i√

b2
0,i +

(
∑t

s=1 ξ2
s,i − 4σ2

i log 1
δ

)+
≤

8σ2
i log 1

δ

b0,i
+ 2
√

2

√√√√ T

∑
s=1

ξ2
s,i

(2)
≤

8σ2
i log 1

δ

b0,i
+ 4

√
σ2

i T + σ2
i log

1
δ

,

where (1) is due to Lemma 4.7.4 and (2) is due to Lemma 4.7.5.
For (2), we have with probability at least 1− 2dδ

∑
t

ξ2
t,i

b2
t,i

= ∑
t

ξ2
t,i

b2
0,i + ∑t

s=1 ∇̂2
s,i

(1)
≤ ∑

t

ξ2
t,i

b2
0,i +

(
∑t

s=1 ξ2
s,i − 4σ2

i log 1
δ

)+
≤

8σ2
i log 1

δ

b2
0,i

+ 2 log

(
1 +

∑T
t=1 ξ2

t,i

2b2
0,i

)
(2)
≤

8σ2
i log 1

δ

b2
0,i

+ 2 log

(
1 +

σ2
i T + σ2

i log 1
δ

2b2
0,i

)
,

where (1) is due to Lemma 4.7.4 and (2) is due to Lemma 4.7.5.

4.8 Simplified Proof for High Probability Convergence of SGD
under Convex Objectives

In this section, we present simplified proofs for SGD under a simplified convex setup
over the proof in Section 4.1. This proof strategy can be generalized to mirror descent
and accelerated variants but we present a simplified setting here to show the main
ideas. This proof strategy presented here also applies to the non-convex case, where
we utilize this strategy when proving the convergence of Subspace Momentum in
Section 8.5 which is quite similar in spirit to the SGD for non-convex objective proof.

Proposition 4.8.1. Suppose that f is convex and L-smooth. Suppose that the gradient
noise ξt := ∇̂ f (x) − ∇ f (x) is σ-sub-gaussian for all x. We have that the SGD update
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xt+1 = xt − ηt∇̂ f (xt) satisfies the following bound with probability at least 1− δ:

1
T

T

∑
t=1

f (xt)− f (x∗) ≤
σ√
T
∥x1 − x∗∥

√
6 + 12 log

1
δ

.

4.8.1 Simplified Proof

Proof. If xt+1 = xt − ηt∇̂ f (xt) then:

∥xt+1 − x∗∥2 = ∥xt+1 − xt + xt − x∗∥2

= ∥xt+1 − xt∥2 + ∥xt − x∗∥2 + 2 ⟨xt+1 − xt, xt − x∗⟩

= η2
t

∥∥∥∇̂ f (xt)
∥∥∥2

+ ∥xt − x∗∥2 + 2ηt

〈
∇̂ f (xt), x∗ − xt

〉
= η2

t

∥∥∥∇̂ f (xt)
∥∥∥2

+ ∥xt − x∗∥2 + 2ηt ⟨ξt, x∗ − xt⟩+ 2ηt ⟨∇ f (xt), x∗ − xt⟩

Using smooth and convex, we have

∥xt+1 − x∗∥2

= η2
t

∥∥∥∇̂(xt)
∥∥∥2

+ ∥xt − x∗∥2 + 2ηt ⟨ξt, x∗ − xt⟩+ 2ηt ⟨∇ f (xt), x∗ − xt⟩︸ ︷︷ ︸
smooth and convex

≤ η2
t

∥∥∥∇̂(xt)
∥∥∥2

+ ∥xt − x∗∥2 + 2ηt ⟨ξt, x∗ − xt⟩+ 2ηt( f (x∗)− f (xt))−
ηt

L
∥∇ f (xt)∥2 .

Since
∥∥∥∇̂(xt)

∥∥∥2
= ∥ξt +∇ f (xt)∥2 ≤ 2 ∥ξt∥2 + 2 ∥∇ f (xt)∥2, we have

∥xt+1 − x∗∥2 − ∥xt − x∗∥2 + 2ηt( f (xt)− f (x∗)) (4.24)

≤ ηt

(
2ηt −

1
L

)
∥∇ f (xt)∥2 + 2η2

t ∥ξt∥2 + 2ηt ⟨ξt, x∗ − xt⟩ . (4.25)

If ηt <
1

2L , we have:

∥xt+1 − x∗∥2 − ∥xt − x∗∥2 + 2ηt( f (xt)− f (x∗)) ≤ 2η2
t ∥ξt∥2 + 2ηt ⟨ξt, x∗ − xt⟩

1
2ηt

[
∥xt+1 − x∗∥2 − ∥xt − x∗∥2

]
+ [ f (xt)− f (x∗)] ≤ ηt ∥ξt∥2 + ⟨ξt, x∗ − xt⟩ .

We define additional weights to help with telescoping (that we pay somewhere else),
where wt ≥ 0 that satisfies the following conditions (which will be obvious from the
analysis):

• wt is non-increasing i.e. w1 ≥ w2 ≥ · · · ≥ wT.
• wtηt ≤ 1

4σ2 and wt is Ft-measurable.
• wt

2ηt
+ 3σ2w2

t ≤
wt−1
2ηt−1

or for fixed step size wt + 6σ2ηw2
t ≤ wt−1.

wt

2ηt

[
∥xt+1 − x∗∥2 − ∥xt − x∗∥2

]
+ wt [ f (xt)− f (x∗)] ≤ wtηt ∥ξt∥2 + wt ⟨ξt, x∗ − xt⟩ .

We can apply Corollary 4.3.3 to get that if wtηt ≤ 1
4σ2 and wt is Ft-measurable then

E
[
exp

(
wtηt ∥ξt∥2 + wt ⟨ξt, x∗ − xt⟩

)
| Ft

]
≤ exp

(
3σ2

(
ηtwt + w2

t ∥x∗ − xt∥2
))

.
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Then applying Lemma (4.3.4), we get that w.p. at least 1− δ

T

∑
t=1

wtηt ∥ξt∥2 + wt ⟨ξt, x∗ − xt⟩ ≤
T

∑
t=1

3σ2
(

ηtwt + w2
t ∥x∗ − xt∥2

)
+ log (1/δ) .

Combining things, we would get that w.p. at least 1− δ:

T

∑
t=1

wt [ f (xt)− f (x∗)] ≤
T

∑
t=1

3σ2ηtwt +
T

∑
t=1

3σ2w2
t ∥x∗ − xt∥2 + log (1/δ)

+
T

∑
t=1

wt

2ηt

[
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

]
.

Let us focus on the distance from optimal terms

T

∑
t=1

wt

2ηt
∥xt − x∗∥2 + 3σ2w2

t ∥x∗ − xt∥2 − wt

2ηt
∥xt+1 − x∗∥2

=
T

∑
t=1

(
wt

2ηt
+ 3σ2w2

t

)
∥xt − x∗∥2 − wt

2ηt
∥xt+1 − x∗∥2 .

To make this telescope, we need to set wt so that wt
2ηt

+ 3σ2w2
t ≤

wt−1
2ηt−1

. Let’s assume
we are working with a fixed step size ηt = η. We need to set

wt + 6σ2ηw2
t ≤ wt−1.

Suppose that we can select wt’s that satisfy those requirements. We would then have

T

∑
t=1

wt [ f (xt)− f (x∗)]

≤
T

∑
t=1

3σ2ηtwt + log (1/δ) +
T

∑
t=1

(
wt

2ηt
+ 3σ2w2

t

)
∥xt − x∗∥2 − wt

2ηt
∥xt+1 − x∗∥2

≤
T

∑
t=1

3σ2ηtwt + log (1/δ) +
T

∑
t=1

wt−1

2ηt−1
∥xt − x∗∥2 − wt

2ηt
∥xt+1 − x∗∥2

=
T

∑
t=1

3σ2ηtwt + log (1/δ) +
w0

2η0
∥x1 − x∗∥2 − wT

2ηT
∥xT+1 − x∗∥2

≤
T

∑
t=1

3σ2ηtwt + log (1/δ) +
w0

2η0
∥x1 − x∗∥2 .

Since wt is non-increasing, we have wT ≤ wt for all t. That means

T

∑
t=1

f (xt)− f (x∗) ≤ 3σ2
T

∑
t=1

ηt
wt

wT
+

1
wT

log (1/δ) +
w0

2η0wT
∥x1 − x∗∥2 .

Note that on the RHS we need an O
(√

T
)

bound.

Setting wt. We need wtηt ≤ 1
4σ2 ⇐⇒ wt ≤ 1

4σ2η
. This is a recursion. If we can solve

it, we might have a better idea on how to solve it. Solving recursion is somewhat
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similar to ODE. Rearranging this, we get

wt − wt−1 = −6σ2η︸ ︷︷ ︸
C

w2
t

∼ dwt

dt
= Cw2

t

=⇒
∫

w−2
t dwt =

∫
C dt

−w−1
t + B = Ct

=⇒ wt =
1

6σ2ηt + B
.

This suggests that we set wT = 1
6σ2ηT+B for some B. Note that wT ≤ 1

4σ2η
if B ≥ 0.

We now have:

wt−1 = wt + 6σ2ηw2
t

≤ 1
6σ2ηt + B

+
6σ2η

(6σ2ηt + B)2

≤ 1
6σ2ηt + B

+
6σ2η

(6σ2ηt + B)(6σ2η(t− 1) + B)

=
6σ2η(t− 1) + B + 6σ2η

(6σ2ηt + B)(6σ2η(t− 1) + B)

=
1

6σ2η(t− 1) + B
.

So we can set B to be anything as long as B ≥ 0.

Finishing. Since wt ≤ 1
6σ2ηt+B , we have wt ≤ 1

B . We have 1
6σ2ηT+B = wT ≤ wt ≤ 1

B .

That means wt
wT
≤ 6σ2ηT+B

B . Setting B = 6σ2ηT (since the upperbound cannot be
smaller than O(1)) gives wt

wT
≤ 2 and wT = 1

12σ2ηT .

T

∑
t=1

f (xt)− f (x∗) ≤ 3σ2η
T

∑
t=1

wt

wT
+

1
wT

log (1/δ) +
w0

2η0wT
∥x1 − x∗∥2

≤ 6Tσ2η [1 + 2 log (1/δ)] +
1
η
∥x1 − x∗∥2 .

Then setting η to balance the two terms finish the proof

6Tσ2η [1 + 2 log (1/δ)] =
1
η
∥x1 − x∗∥2

=⇒ η =
∥x1 − x∗∥√

6Tσ2 [1 + 2 log (1/δ)]
.

Our final bound is

1
T

T

∑
t=1

f (xt)− f (x∗) ≤
σ√
T
∥x1 − x∗∥

√
6 + 12 log

1
δ

.
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Chapter 5

Heavy-Tailed Noise: Clipped SGD
and Clipped (Accelerated) SMD

5.1 Overview

This section addresses several open questions posed by previous works including
handling general domains and dealing with an unknown time horizon under heavy-
tailed noise. Qualitatively, we close the logarithmic suboptimality gap and achieve
the optimal rate in several settings. More specifically:
−We demonstrate a novel approach to analyze clipped gradient methods in high

probability that is general and applies to various standard settings. In the convex set-
ting, we analyze Clipped-SMD and clipped stochastic accelerated mirror descent. In
the non-convex setting, we analyze Clipped-SGD. Using our new analysis, we show
that clipped methods attain time-optimal convergence in high probability for both
convex and nonconvex objectives under heavy-tailed gradient noise. In the con-

vex setting, we obtain an O
(

T
1−p

p

)
convergence rate for arbitrary (not necessarily

compact) convex domains for Clipped-SMD and O
(

T
1−p

p σ + T−2
)

for accelerated

Clipped-SMD, where σ is the noise parameter. These rates are time-optimal and
match the lower bounds in (Raginsky and Rakhlin, 2009; Vural et al., 2022). In the

nonconvex setting, we obtain the optimal convergence rate of O
(

T
2−2p
3p−2

)
for clipped-

SGD. This bound is also time-optimal and matches the lower bound in (Zhang et al.,
2020); it also complements the in-expectation convergence of clipped-SGD provided
by (Zhang et al., 2020).
− Previous works for heavy-tailed noises follow the recipe of using Freedman-

type inequalities (Freedman, 1975; Dzhaparidze and Van Zanten, 2001) as a blackbox
and bound the iterates inductively for all iterations. This process incurs an addi-
tional log T dependency in the final convergence rate; in other words, the success
probability goes from 1 − δ to 1 − Tδ. The step sizes and clipping parameters of
this approach depend on the time horizon T to enable the union bound and induc-
tion across all iterations in the analysis, excluding the important case when the time
horizon is unknown. Our whitebox approach forgoes the aforementioned induction,
not only circumventing the log T loss but also allowing for an unknown time hori-
zon. We further show that our analysis allows for a choice of step size and clipping
parameters that do not depend on generally unknown parameters like the noise-
parameter σ, the failure probability δ, and the initial distance to the optimum, all of
which appear impossible using only the techniques from prior works.
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5.1.1 Assumptions

We reiterate the assumptions in this setting:
(1) Existence of a minimizer: In the convex setting, we assume that there exists

x∗ ∈ arg minx∈X f (x). We let f ∗ = f (x∗).
(1’) Existence of a finite lower bound: In the nonconvex setting, we assume that

f admits a finite lower bound, i.e., f ∗ := infx∈Rd f (x) > −∞.
(2) Unbiased estimator: We assume that our algorithm is allowed to query a

stochastic first-order oracle that returns a history-independent, unbiased gradient
estimator ∇̂ f (x) of ∇ f (x) for any x ∈ X . That is, conditioned on the history and
the queried point x, we have E[∇̂ f (x) | x] = ∇ f (x).

(3) Bounded pth moment noise: We assume that there exists σ > 0 such that for
some 1 < p ≤ 2 and for any x ∈ X , ∇̂ f (x) satisfies E[∥∇̂ f (x)−∇ f (x)∥p

∗ | x] ≤ σp.
(4) L-smoothness: We consider the class of L-smooth functions: for all x, y ∈ Rd,

∥∇ f (x)−∇ f (y)∥∗ ≤ L ∥x− y∥ .

5.2 Gradient Clipping Operator and Notations

We introduce the gradient clipping operator and its general properties used in Clipped-
SMD (Algorithm 7) and Clipped-SGD (Algorithm 6). Let xt be the output at iteration
t of an algorithm of interest. We denote by ∇̂ f (xt) the stochastic gradient obtained
by querying the gradient oracle. The clipped gradient estimate ∇̃ f (xt) is taken as

∇̃ f (xt) = min

1,
λt∥∥∥∇̂ f (xt)

∥∥∥
∗

 ∇̂ f (xt), (5.1)

where λt is the clipping parameter used in iteration t. In subsequent sections, we
let ∆t := f (xt) − f ∗ denote the optimal function value gap at xt. We let Ft =

σ
(
∇̂ f (x1), . . . , ∇̂ f (xt)

)
be the natural filtration at time t and define the following

notations for the stochastic error, the deviation, and the bias of the clipped gradient
estimate at time t:

θt = ∇̃ f (xt)−∇ f (xt);

θu
t = ∇̃ f (xt)−E

[
∇̃ f (xt) | Ft−1

]
θb

t ; = E
[
∇̃ f (xt) | Ft−1

]
−∇ f (xt).

Note that θu
t + θb

t = θt. Regardless of the convexity of the function f , the follow-
ing lemma provides upper bounds for these quantities. These bounds can be found
in prior works (Gorbunov et al., 2020; Zhang et al., 2020; Liu et al., 2023d; Sadiev et
al., 2023) for the special case of ℓ2 norm. The extension to the general norm follows
in the same manner, which we omit in this work.

Lemma 5.2.1. For stochastic gradients ∇̂ f (xt) with bounded pth moment noise, the clipped
gradients ∇̃ f (xt) satisfy the following properties:

∥θu
t ∥∗ =

∥∥∥∇̃ f (xt)−E
[
∇̃ f (xt) | Ft−1

]∥∥∥
∗
≤ 2λt. (5.2)
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Furthermore, if ∥∇ f (xt)∥∗ ≤
λt
2 then∥∥∥θb

t

∥∥∥
∗
=
∥∥∥E
[
∇̃ f (xt) | Ft−1

]
−∇ f (xt)

∥∥∥
∗
≤ 4σpλ

1−p
t ; (5.3)

E
[
∥θu

t ∥
2
∗

]
= E

[∥∥∥∇̃ f (xt)−Et

[
∇̃ f (xt)

]∥∥∥2

∗
| Ft−1

]
≤ 40σpλ

2−p
t . (5.4)

Finally, we state a simple but important lemma that bounds the moment gener-
ating function of a zero-mean bounded random variable. The proof can be found in,
for example, equation (3) of (Beygelzimer et al., 2011).

Lemma 5.2.2. Let X be a random variable such that E [X] = 0 and |X| ≤ R almost surely.
Then for 0 ≤ λ ≤ 1

R

E [exp (λX)] ≤ exp
(

3
4

λ2E
[
X2]) .

5.3 Clipped Stochastic Gradient Descent for Nonconvex Func-
tions

Algorithm 6 Clipped-SGD
Parameters: initial point x1, step sizes {ηt}, clipping parameters {λt}
for t = 1 to T do

∇̃ f (xt) = min
{

1, λt

∥∇̂ f (xt)∥

}
∇̂ f (xt)

xt+1 = xt − ηt∇̃ f (xt)

In this section, we study the convergence of Clipped-SGD for nonconvex func-
tions. Here, we consider the domain to be Rd equipped with the standard ℓ2 norm.
We first outline a blackbox concentration argument to show convergence in high
probability of Algorithm 6 and then follow-up with a more powerful whitebox ap-
proach that allows for a tight high probability convergence analysis.

Comparison to previous works. In the simple setting of known time horizon

and without momentum for Clipped-SGD, the Õ(T
2−2p
3p−2 ) convergence rate has not

been shown before to the best of our knowledge. The recent work by (Sadiev et

al., 2023) study this case and only give a suboptimal rate of Õ(T
1−p

p ). Note that
(Cutkosky and Mehta, 2021; Liu et al., 2023d) study other variants of Clipped-SGD
with momentums incorporated. Although (Cutkosky and Mehta, 2021; Liu et al.,

2023d) achieve the nearly-optimal time dependency of Õ(T
2−2p
3p−2 ) in the non-convex

settings, they rely on using blackbox concentration inequalities which result in a
suboptimal convergence rate that also requires a known time horizon.

We first present the guarantee for known time horizon T via our whitebox ap-
proach in Theorem 5.3.1 and defer the statement for unknown T in Theorem 5.7.2 to
Section 5.7.
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Theorem 5.3.1. Assume that f satisfies Assumption (1’), (2), (3), (4). Let γ := max
{

log 1
δ ; 1
}

and ∆1 := f (x1)− f ∗. For known time horizon T, we choose λt and ηt such that

λt := λ := max

{(
8γ√
L∆1

) 1
p−1

T
1

3p−2 σ
p

p−1 ; 2
√

90L∆1; 32
1
p σT

1
3p−2

}

ηt := η :=
√

∆1T
1−p
3p−2

8λ
√

Lγ
=

√
∆1

8
√

Lγ
min


(

8γ√
L∆1

) −1
p−1

T
−p

3p−2 σ
−p
p−1 ;

T
1−p
3p−2

2
√

90L∆1
;

T
−p

3p−2

321/pσ

 .

Then with probability at least 1− δ

1
T

T

∑
t=1
∥∇ f (xt)∥2 ≤ 720

√
∆1Lγ max

{(
8γ√
L∆1

) 1
p−1

T
2−2p
3p−2 σ

p
p−1 ;

2
√

90L∆1T
1−2p
3p−2 ; 321/pσT

2−2p
3p−2

}
= O

(
T

2−2p
3p−2

)
.

Remark 2. In comparison to the corresponding results in (Sadiev et al., 2023) (Theorem
E.2), while our result achieves a poly T factor better rate when p < 2, the dependency on
log 1

δ in our result contains a dependency on p while the result in (Sadiev et al., 2023) does
not. That term can dominate the convergence rate in the regime when δ is very small and p
is very close to 1. Hence, an open question is to remove such dependency on p for the log 1

δ
term while still maintain the optimal rate on T.

Now, we turn to the analysis, starting with the key Lemma 5.3.2 (proof in Section
5.7).

Lemma 5.3.2. Assume that f satisfies Assumption (1’), (2), (3), (4) and ηt ≤ 1
L then for all

t ≥ 1,

ηt

2
∥∇ f (xt)∥2 ≤ ∆t − ∆t+1 +

(
Lη2

t − ηt
)
⟨∇ f (xt), θu

t ⟩+
3ηt

2

∥∥∥θb
t

∥∥∥2

+ Lη2
t

(
∥θu

t ∥
2 −E

[
∥θu

t ∥
2 | Ft−1

])
+ Lη2

t E
[
∥θu

t ∥
2 | Ft−1

]
. (5.5)

Remark 3. In Lemma 5.3.2, we decompose the RHS into appropriate terms that allow
us to define a martingale. This lemma helps us understand why we can achieve a bet-

ter convergence rate O(T
2−2p
3p−2 ) (for minimizing the norm squared of the gradient) in com-

parison to the best rate of O(T
1−p

p ) in the convex setting. We focus on the error term
⟨∇ f (xt), θt⟩ = ⟨∇ f (xt), θu

t ⟩ +
〈
∇ f (xt), θb

t
〉

on the RHS of (5.5). Since this error con-
tains the gradient ∇ f (xt), we leverage some of the gain ∥∇ f (xt)∥2 on the LHS of 5.5: we
use Cauchy-Schwarz to bound

〈
∇ f (xt), θb

t
〉
≤ 1

2∥∇ f (xt)∥2 + 1
2∥θb

t ∥2 and use the some of
the gain to absorb the first term. Then setting our parameters λt, ηt appropriately to balance

the remaining terms helps us achieve the O(T
2−2p
3p−2 ) rate. Contrast this to the convex setting

in the next section: the mismatch between the error term that contains the distance term
∥x∗ − xt∥ and the gain term that contains the function value gap f (xt)− f ∗ prevents us
from using the gain to absorb some of the error. Thus, this explains the convergence rate
discrepancy between the convex case and the non-convex setting (see also Remark 6).

Before giving a sketch of our whitebox approach, we present a sketch of a black-
box argument that gives a nearly time-optimal convergence rate. This approach has
an additional log T factor in the final rate but will serve as a point of comparison for
our new techniques, which will close the logarithmic gap.
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Blackbox approach. The key lies in the following lemma, which yields the near

optimal Õ(T
2−2p
3p−2 ) convergence rate of Clipped-SGD. In this case, we assume that

the clipping parameters λt and the step sizes ηt are fixed. Note that the success
probability is only 1− Tδ. This result uses Lemma 5.3.2 and Freedman’s inequality
(Theorem 5.6.1) primarily as a blackbox to bound the error terms inductively by the
initial function value gap to optimality.

Lemma 5.3.3. For 1 ≤ N ≤ T + 1, let ηt = η, λt = λ (the specific choices are omitted here
for brevity) and EN be the event that for all k = 1, . . . N,

Lη2
k−1

∑
t=1
∥θu

t ∥
2 +

(
Lη2 − η

) k−1

∑
t=1
⟨∇ f (xt), θu

t ⟩+
3η

2

k−1

∑
t=1

∥∥∥θb
t

∥∥∥2
≤ ∆1.

Then EN happens with probability at least 1− (N−1)δ
T for each N ∈ [T + 1].

With the above lemma, we can obtain a near-optimal convergence rate. However,
this rate is still suboptimal due to the use of T union bounds as part of the induction
proof. We now discuss an improved analysis that closes the remaining gap.

Whitebox approach. Our whitebox approach defines a novel supermartingale
difference sequence Zt (shown below) and analyzes its moment generating function
from first principles. The sequence is designed to leverage the structure of the prob-
lem and Clipped-SGD via carefully chosen decreasing weights zt (shown below).

Zt := zt

(
ηt

2
∥∇ f (xt)∥2 + ∆t+1 − ∆t −

3ηt

2

∥∥∥θb
t

∥∥∥2
− Lη2

t E
[
∥θu

t ∥
2 | Ft−1

])
−
(

3z2
t Lη2

t ∆t + 6L2z2
t η4

t λ2
t

)
E
[
∥θu

t ∥
2 | Ft−1

]
where zt :=

1
2Ptηtλt maxi≤t

√
2L∆i + 8QtLη2

t λ2
t

for Pt, Qt ∈ Ft−1 ≥ 1. We also define St := ∑t
i=1 Zi. Note that by selecting Pt, Qt, ηt, λt

appropriately so that Ptηtλt and Qtη
2
t λ2

t are constants (see for example the proof of
Proposition 5.3.5 in Section 5.7), we can ensure that the sequence zt is decreasing.

We now present Lemma 5.3.4 which is the main result for controlling the above
martingale, whose proof will offer insights into the main technique in this paper.
The technique to prove Lemma 5.3.4 is similar to the standard way of bounding the
moment generating function in proving concentration inequalities, such as Freed-
man’s inequality (Freedman, 1975; Dzhaparidze and Van Zanten, 2001). The main
challenge here is to find a way to leverage the structure of Clipped-SGD and choose
the suitable coefficients zt. Similarly to (Liu et al., 2023c) where the authors analyze
SGD with sub-Gaussian noise, we analyze the martingale difference sequence in a
“whitebox” manner. In (Liu et al., 2023c), however, thanks to the light-tailed noise,
the weights zt can be chosen depending only on the problem parameters and in-
dependently of the algorithm history. On the other hand, to use Lemma 5.2.2, we
have to make sure that zt ≤ 1

R , where R is an upper bound for the martingale el-
ements. The key here is to choose zt depending on the past iterates, and use the
function value gaps ∆t to absorb the error incurred during the analysis. We give a
proof sketch and defer the full version to Section 5.7.
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Lemma 5.3.4. For any δ > 0, let E(δ) be the event that for all 1 ≤ k ≤ T

1
2

k

∑
t=1

ztηt ∥∇ f (xt)∥2 + zk∆k+1 ≤ z1∆1 + log
1
δ
+

k

∑
t=1

3ztηt

2

∥∥∥θb
t

∥∥∥2

+
k

∑
t=1

(
(3z2

t Lη2
t ∆t + 6L2z2

t η4
t λ2

t + ztLη2
t )E

[
∥θu

t ∥
2 | Ft−1

] )
.

Then Pr [E(δ)] ≥ 1− δ.

Proof Sketch. Using Lemmas 5.3.2, 5.2.2, and the condition for zt, we can show that
E [exp (Zt) | Ft−1] ≤ 1. This then implies

E [exp (St) | Ft−1] = exp (St−1)E [exp (Zt) | Ft−1] ≤ exp (St−1) ,

which means (exp (St))t≥1 is a supermartingale. By Ville’s inequality, we have, for
all k ≥ 1, Pr

[
Sk ≥ log 1

δ

]
≤ δE [exp (S1)] ≤ δ. In other words, with probability at

least 1− δ, for all k ≥ 1, ∑k
t=1 Zt ≤ log 1

δ . Plugging in the definition of Zt we obtain
the desired inequality.

We now specify the choice of ηt and λt. The following lemma gives a general
condition for the choice of ηt and λt that gives the right convergence rate in time T.

Proposition 5.3.5. We assume that the event E(δ) from Lemma 5.3.4 happens. Suppose
that for some ℓ ≤ T, there are constants C1, C2 and C3 such that for all t ≤ ℓ

1. λtηt
√

2L ≤ C1; 2. 1
Lηt

(
1
λt

)p
≤ C2; 3. ∑T

t=1 L
(

1
λt

)p
λ2

t η2
t ≤ C3; 4. ∥∇ f (xt)∥ ≤

λt
2 .

Then for all t ≤ ℓ+ 1

1
2

t

∑
i=1

ηi ∥∇ f (xi)∥2 + ∆t+1 ≤
(√

∆1 + 2
√

AC1

)2

for a constant A ≥ max
{

64
(

log 1
δ +

60σpC3
C2

1

)2
+ 48σ2pC2C3+140σpC3

C2
1

; 1
}

.

Finally, the proof for Theorem 5.3.1 is a direct consequence of Proposition 5.3.5
where we defer the details to Section 5.7.

5.4 Clipped Stochastic Mirror Descent for Convex Objectives

Algorithm 7 Clipped-SMD
Parameters: initial point x1, step sizes {ηt}, clipping parameters {λt}, ψ is 1-strongly
convex wrt ∥·∥
for t = 1 to T do

∇̃ f (xt) = min
{

1, λt

∥∇̂ f (xt)∥∗

}
∇̂ f (xt)

xt+1 = arg minx∈X
{

ηt

〈
∇̃ f (xt), x

〉
+ Dψ (x, xt)

}
In this section, we present and analyze the Clipped Stochastic Mirror Descent

algorithm (Algorithm 7) under heavy-tailed noise, with a general domain and arbi-
trary norm.
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We define the Bregman divergence Dψ(x, y) = ψ(x) − ψ(y) − ⟨∇ψ(y), x− y⟩,
where ψ : Rd → R is a 1-strongly convex differentiable function with respect to
the norm ∥·∥ on X . We assume for convenience that dom (ψ) = Rd. Algorithm 7
is a generalization of Clipped-SGD for convex functions to an arbitrary norm. The
only difference from the standard Stochastic Mirror Descent algorithm is the use of
the clipped gradient ∇̃ f (xt) in place of the true stochastic gradient ∇̂ f (xt) when
computing the new iterate xt+1.

Prior works such as (Gorbunov et al., 2020) only consider the setting where the
global minimizer lies in X . Our algorithm and analysis does not require this restric-
tion and instead only uses the following initial gradient estimate assumption from
(Nazin et al., 2019):

(5) Initial gradient estimate: Let x1 be the initial point. We assume that we have
access to an upperbound ∇1 of ∥∇ f (x1)∥∗ i.e. ∥∇ f (x1)∥∗ ≤ ∇1. This assump-
tion is justified as follows. If the noise parameter σ defined in assumption (3) is
known, we can use the procedure of (Minsker, 2015) to estimate ∥∇ f (x1)∥∗: we take
O (ln (1/δ)) stochastic gradient samples at x1, and let g1 be the geometric median
of these samples; we then set ∇1 := ∥g1∥∗ + 10σ. It follows from (Minsker, 2015)
that ∥∇ f (x1)∥∗ ≤ ∇1 holds with probability at least 1− δ. If the domain contains
the global optimum x∗ (∇ f (x∗) = 0) and the initial distance ∥x1 − x∗∥ is known,
we have the following alternative upper bound that follows from ∇ f (x∗) = 0 and
smoothness:∥∇ f (x1)∥∗ = ∥∇ f (x1)−∇ f (x∗)∥∗ ≤ L ∥x1 − x∗∥.

Convergence guarantees. We first state the convergence guarantee for this al-
gorithm in Theorem 5.4.1 which works for an arbitrary norm and a general domain
which may not include the global optimum. In this theorem, we assume that we
know several problem parameters to show the main idea of our analysis. In Theo-
rem 5.4.2, we remove the knowledge of the problem parameters.

Theorem 5.4.1. Assume that convex f satisfies Assumptions (1), (2), (3), (4) and (5). Let

γ = max
{

log 1
δ ; 1
}

; R1 =
√

2Dψ (x∗, x1) , and assume that ∇1 is an upper bound of
∥∇ f (x1)∥∗. For known T, we choose λt and ηt such that

λt = λ = max

{(
26T

γ

)1/p

σ; 2 (3LR1 +∇1)

}
, and

ηt = η =
R1

24λtγ
=

R1

24γ
min

{(
26T

γ

)−1/p

σ−1;
1
2
(3LR1 +∇1)

−1

}
.

Then with probability at least 1− δ

1
T

T+1

∑
t=2

∆t ≤ 48R1 max
{

26
1
p T

1−p
p σγ

p−1
p ; 2 (3LR1 +∇1) T−1γ

}
= O

(
T

1−p
p

)
.

Remark 4. This theorem shows that the convergence rate for the known time horizon case is

O(T
1−p

p ). This rate is known to be optimal, matching the lower bounds shown in (Raginsky
and Rakhlin, 2009; Vural et al., 2022). The above guarantee is also adaptive to σ, i.e., when
σ→ 0, we obtain the standard O(T−1) convergence rate of deterministic mirror descent.

Remark 5. The term∇1 in the above theorem comes from the inexact estimation of ∥∇ f (x1)∥∗.
If we assume that the global optimum lies in the domain X , we can simply select∇1 = LR1
without using the estimation procedure, as discussed in (5).
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In Theorem 5.4.1, we use the initial distance R1 to the optimal solution to set the
step sizes and clipping parameters. This information is generally not available, but
can be avoided. For example, for constrained problems where the domain radius
is bounded by R, we can replace R1 in Theorem 5.4.1 by R without change in the
dependency. However, for the general problem, we present Theorem 5.4.2, where
we do not require knowledge of the constants T, σ, δ or R1 to set the step sizes and
clipping parameters. However, we still need the mild assumption of knowing an
upper bound ∇1 on ∥∇ f (x1)∥∗. As discussed in (5), ∇1 can be estimated with good
accuracy when σ is known.

Theorem 5.4.2. Assume that convex f satisfies Assumption (1), (2), (3), (4) and (5). Let

γ = max
{

log 1
δ ; 1
}

; R1 =
√

2Dψ (x∗, x1), and assume that ∇1 is an upper bound of
∥∇ f (x1)∥∗. We choose λt and ηt such that

λt = max
{(

52t(1 + log t)2c2
)1/p

; 2
(

L max
i≤t
∥xi − x1∥+∇1

)
;

Lc1

6

}
, and

ηt =
c1

24λt
=

c1

24
min

{(
52t(1 + log t)2c2

)−1/p
;

1
2 (L maxi≤t ∥xi − x1∥+∇1)

;
6

Lc1

}
,

where the absolute constants c1 and c2 are to ensure the correctness of the dimensions. Then,
with probability at least 1− δ, we have

1
T

T+1

∑
t=2

∆t ≤
8

Tc1

(
R1 +

c1

3

(
γ +

2σp

c2

))2

max

{ (
52T(1 + log T)2c2

)1/p
;

4R1L +
2c1

3
L
(

γ +
2σp

c2

)
+ 2∇1;

Lc1

6

}
= Õ

(
T

1−p
p

)
.

Sketch of the analysis. In the remainder of this section, we provide a sketch of
the analysis for Theorem 5.4.1, which starts with the following lemma.

Lemma 5.4.3. Assume that convex f satisfies Assumption (1), (2), (3), (4) and ηt ≤ 1
4L ,

the iterate sequence (xt)t≥1 output by Algorithm 7 satisfies the following:

ηt∆t+1 ≤ Dψ (x∗, xt)−Dψ (x∗, xt+1) + ηt ⟨x∗ − xt, θu
t ⟩+ ηt

〈
x∗ − xt, θb

t

〉
+ 2η2

t

(
∥θu

t ∥
2
∗ −E

[
∥θu

t ∥
2
∗ | Ft−1

])
+ 2η2

t E
[
∥θu

t ∥
2
∗ | Ft−1

]
+ 2η2

t

∥∥∥θb
t

∥∥∥2

∗
.

Remark 6. In contrast to Remark 3, there is a mismatch between the gain ∆t+1 and the loss
⟨x∗ − xt, θt⟩. Since the distance ∥x∗ − xt∥ and the function value gap ∆t cannot be related
in the general convex case, we do not obtain the same rate as in the nonconvex case.

We now define the following terms for t ≥ 1:

Zt := zt

(
ηt∆t+1 + Dψ (x∗, xt+1)−Dψ (x∗, xt)− ηt

〈
x∗ − xt, θb

t

〉
− 2η2

t

∥∥∥θb
t

∥∥∥2

∗

− 2η2
t E
[
∥θu

t ∥
2
∗ | Ft−1

] )
−
(

3
8λ2

t
+ 24z2

t η4
t λ2

t

)
E
[
∥θu

t ∥
2 | Ft−1

]
,

where zt :=
1

2ηtλt maxi≤t

√
2Dψ (x∗, xi) + 16Qη2

t λ2
t
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for a constant Q ≥ 1. We also define St := ∑t
i=1 Zi. We have the following lemma,

which is analogous to Lemma 5.3.4 in the nonconvex case.

Lemma 5.4.4. For any δ > 0, let E(δ) be the event that for all 1 ≤ k ≤ T

k

∑
t=1

ztηt∆t+1 + zkDψ (x∗, xk+1) ≤ z1Dψ (x∗, x1) + log
1
δ
+

k

∑
t=1

ztηt

〈
x∗ − xt, θb

t

〉
+2

k

∑
t=1

ztη
2
t

∥∥∥θb
t

∥∥∥2

∗
+

k

∑
t=1

((
2ztη

2
t +

3
8λ2

t
+ 24z2

t η4
t λ2

t

)
E
[
∥θu

t ∥
2
∗ | Ft−1

])
.

(5.6)

Then Pr [E(δ)] ≥ 1− δ.

We now specify the choice of ηt and λt. The following proposition gives a general
condition for the choice of ηt and λt that gives the right convergence rate in time T.

Proposition 5.4.5. We assume that the event E(δ) from Lemma 5.4.4 happens. Suppose
that for some ℓ ≤ T, there are constants C1, C2, C3, and A such that for all t ≤ ℓ

1. λtηt = C1; 2. ∑ℓ
t=1

(
1
λt

)p
≤ C2; 3.

(
1
λt

)2p
≤ C3

(
1
λt

)p
; 4. ∥∇ f (xt)∥∗ ≤

λt
2 .

Then for all t ≤ ℓ+ 1

t

∑
i=1

ηi∆i+1 + Dψ (x∗, xt+1) ≤
1
2
(R1 + 8AC1)

2

for A ≥ max
{

log 1
δ + 26σpC2 +

2σ2pC2C3
A ; 1

}
.

Theorem 5.4.1 follows from Proposition 5.4.5. Both proofs can be found in Section
5.7.

5.5 Accelerated Stochastic Mirror Descent and Extensions

Algorithm 8 Clipped-ASMD
Parameters: initial point y1 = z1, step sizes {ηt}, clipping parameters {λt}, and
mirror map ψ, where ψ is 1-strongly convex wrt ∥·∥.
For t = 1 to T do:

Set αt =
2

t+1 .
xt = (1− αt) yt + αtzt.

∇̃ f (xt) = min
{

1, λt

∥∇̂ f (xt)∥∗

}
∇̂ f (xt).

zt+1 = arg minx∈X
{

ηt

〈
∇̃ f (xt), x

〉
+ Dψ (x, zt)

}
.

yt+1 = (1− αt) yt + αtzt+1.

In Section 5.9, we also show the convergence and its analysis for Clipped Accel-
erated Stochastic Mirror Descent (Algorithm 8). We require the following additional
assumption:

(5’) Global minimizer: We assume that ∇ f (x∗) = 0.
In other words, we assume that the global minimizer lies in the domain of the

problem. This assumption is consistent with the works of (Gorbunov et al., 2020;
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Sadiev et al., 2023). Our analysis readily extends to non-smooth settings, and more
generally to functions that satisfy

f (y)− f (x) ≤ ⟨∇ f (x), y− x⟩+ G ∥y− x∥+ L
2
∥y− x∥2 , ∀y, x ∈ X .

This condition is satisfied by both Lipschitz functions (when L = 0) and smooth
functions (when G = 0). The key step is to extend Lemma 5.4.3. The proof follows
from (Lan, 2020) and can be found in Section 5.7.

5.6 Freedman’s Inequality

Lemma 5.6.1 (Freedman’s inequality). Let (Xt)t≥1 be a martingale difference sequence.
Assume that there exists a constant c > 0 such that |Xt| ≤ c almost surely for all t ≥ 1 and
define σ2

t = E
[
X2

t | Xt−1, . . . , X1
]
. Then for all b > 0, F > 0 and T ≥ 1

Pr

[∣∣∣∣∣ T

∑
t=1

Xt

∣∣∣∣∣ > b and
T

∑
t=1

σ2
t ≤ F

]
≤ 2 exp

(
− b2

2F + 2cb/3

)
.

5.7 Missing Proofs from Section 5.3

Proof of Lemma 5.3.2. By the smoothness of f and the update xt+1 = xt − 1
ηt
∇̃ f (xt)

we have

f (xt+1)− f (xt)

≤ ⟨∇ f (xt), xt+1 − xt⟩+
L
2
∥xt+1 − xt∥2

=− ηt

〈
∇ f (xt), ∇̃ f (xt)

〉
+

Lη2
t

2

∥∥∥∇̃ f (xt)
∥∥∥2

=− ηt ⟨∇ f (xt), θt +∇ f (xt)⟩+
Lη2

t
2
∥θt +∇ f (xt)∥2

=− ηt ∥∇ f (xt)∥2 − ηt ⟨∇ f (xt), θt⟩+
Lη2

t
2
∥θt∥2 +

Lη2
t

2
∥∇ f (xt)∥2 + Lη2

t ⟨∇ f (xt), θt⟩

=−
(

ηt −
Lη2

t
2

)
∥∇ f (xt)∥2 +

Lη2
t

2
∥θt∥2 +

(
Lη2

t − ηt
)
⟨∇ f (xt), θt⟩

=−
(

ηt −
Lη2

t
2

)
∥∇ f (xt)∥2 +

Lη2
t

2
∥θt∥2 +

(
Lη2

t − ηt
)︸ ︷︷ ︸

≤0

〈
∇ f (xt), θu

t + θb
t

〉
.
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Using Cauchy-Schwarz, we have
〈
∇ f (xt), θb

t
〉
≤ 1

2 ∥∇ f (xt)∥2 + 1
2

∥∥θb
t
∥∥2. Thus, we

derive

∆t+1 − ∆t ≤ −
(

2ηt − Lη2
t

2

)
∥∇ f (xt)∥2 +

Lη2
t

2
∥θt∥2 +

(
Lη2

t − ηt
)
⟨∇ f (xt), θu

t ⟩

+
ηt − Lη2

t
2

∥∇ f (xt)∥2 +
ηt − Lη2

t
2

∥∥∥θb
t

∥∥∥2

≤ −ηt

2
∥∇ f (xt)∥2 +

Lη2
t

2
∥θt∥2 +

(
Lη2

t − ηt
)
⟨∇ f (xt), θu

t ⟩+
ηt

2

∥∥∥θb
t

∥∥∥2

≤ −ηt

2
∥∇ f (xt)∥2 + Lη2

t ∥θu
t ∥

2 +
(

Lη2
t − ηt

)
⟨∇ f (xt), θu

t ⟩+
(

Lη2
t +

ηt

2

) ∥∥∥θb
t

∥∥∥2

≤ −ηt

2
∥∇ f (xt)∥2 + Lη2

t ∥θu
t ∥

2 +
(

Lη2
t − ηt

)
⟨∇ f (xt), θu

t ⟩+
3ηt

2

∥∥∥θb
t

∥∥∥2
,

where the third inequality is due to ∥θt∥2 ≤ 2 ∥θu
t ∥

2 + 2
∥∥θb

t
∥∥2, and the last inequality

is due to ηt ≤ 1
L . Rearranging, adding, and subtracting E

[
∥θu

t ∥
2 | Ft−1

]
, we obtain

the lemma.

Detailed proof of Lemma 5.3.3. We state the following simple properties of the choice
of η and λ in Theorem 5.3.1. We have

1
L

(σ

λ

)p
≤ η (5.7)

η ≤ 1
L

(5.8)(σ

λ

)p
T

p
3p−2 ≤ 1

32
(5.9)

TL
(σ

λ

)p
λ2η2 ≤ ∆1

2048
. (5.10)

We will now prove by induction on N that EN happens with probability at least
1− (N−1)δ

T . For N = 1, the event happens with probability 1. Suppose that for some
N ≤ T, Pr [EN ] ≥ 1− (N−1)δ

T . We will prove that Pr [EN+1] ≥ 1− Nδ
T .

Since the LHS of (5.5) is non-negative, for k ≤ N, we have, under the event EN ,

∆k ≤ ∆1 +
(

Lη2 − η
) k−1

∑
t=1
⟨∇ f (xt), θu

t ⟩+ Lη2
k−1

∑
t=1

(
∥θu

t ∥
2 −Et

[
∥θu

t ∥
2
])

+
3η

2

k−1

∑
t=1

∥∥∥θb
t

∥∥∥2
+ Lη2

k−1

∑
t=1

Et

[
∥θu

t ∥
2
]
≤ 2∆1.

From the induction hypothesis and Lemma 5.3.2, we have that for all k ≤ N, ∆k ≤
2∆1. Since the LHS of (5.5) is non-negative, by summing over t from 1 to N we have,

∆N+1 ≤
(
η − Lη2) N

∑
t=1
⟨−∇ f (xt), θu

t ⟩︸ ︷︷ ︸
A

+
3η

2

N

∑
t=1

∥∥∥θb
t

∥∥∥2

︸ ︷︷ ︸
B

+ Lη2
N

∑
t=1

(
∥θu

t ∥
2 −Et

[
∥θu

t ∥
2
])

︸ ︷︷ ︸
C

+ Lη2
N

∑
t=1

Et

[
∥θu

t ∥
2
]

︸ ︷︷ ︸
D

.
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The bounds for B and D are straightforward from Lemma 5.2.1. First, with proba-
bility 1, we have ∥θu

t ∥ ≤ 2λ. By the smoothness of f and the fact that f is bounded
below, we have

∥∇ f (xt)∥ ≤
√

2L∆t.

Furthermore, when the event EN happens, we have

∥∇ f (xt)∥ ≤
√

2L∆t ≤
√

4L∆1 ≤
λ

2
.

Thus, we can apply Lemma 5.2.1 and obtain
∥∥θb

t
∥∥ ≤ 4σpλ1−p and Et

[
∥θu

t ∥
2
]
≤

40σpλ2−p.

Upperbound for B. By (5.3), when the event EN happens,

B =
3η

2

∥∥∥θb
t

∥∥∥2
≤ 3η

2

N

∑
t=1

16σ2pλ2−2p = 24σ2pλ2−2pηN

≤ 24T
(σ

λ

)2p
λ2η ≤ 24TL

(σ

λ

)p
λ2η2 ≤ 3∆1

256
.

Upperbound for D. By 5.4, when the event EN happens,

D = Lη2
N

∑
t=1

Et

[
∥θu

t ∥
2
]
≤ Lη2

N

∑
t=1

40σpλ2−p

≤ 40σpλ2−pLη2N ≤ 40LT
(σ

λ

)p
(λη)2 ≤ 5∆1

256
.

To bound A and C, we use Freedman’s inequality (Theorem 5.6.1). We define, for
t ≥ 1, the following random variables

Zt =

{
−∇ f (xt) if ∆t ≤ 2∆1

0 otherwise.

Thus ∥Zt∥ ≤ ∥∇ f (xt)∥ ≤ 2
√

L∆1 for all t.

Upperbound for A. Instead of bounding A =
(
η − Lη2)∑N

t=1 ⟨−∇ f (xt), θu
t ⟩, we

will bound A′ =
(
η − Lη2)∑N

t=1 ⟨Zt, θu
t ⟩. We check the conditions to apply Freed-

man’s inequality. First Et
[(

η − Lη2) ⟨Zt, θu
t ⟩
]
= 0. Further, with probability 1,

∥θu
t ∥

2 ≤ 2λ, and Zt ≤ 2
√

L∆1, thus
∣∣(η − Lη2) ⟨Zt, θu

t ⟩
∣∣ ≤ (

η − Lη2) ∥Zt∥ ∥θu
t ∥ ≤

4
√

L∆1
(
η − Lη2) λ ≤ 4

√
L∆1ηλ. Hence,

{(
η − Lη2) ⟨Zt, θu

t ⟩
}

is a bounded martin-
gale difference sequence. Therefore, for constant a and F to be chosen we have

Pr

[∣∣∣∣∣ N

∑
t=1

(
η − Lη2) ⟨Zt, θu

t ⟩
∣∣∣∣∣ > a and

N

∑
t=1

Et

[((
η − Lη2) ⟨Zt, θu

t ⟩
)2
]
≤ F ln

4T
δ

]

≤ 2 exp

(
− a2

2F ln 4T
δ + 8

3

√
L∆1ηλa

)
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We choose a such that

2 exp

(
− a2

2F ln 4T
δ + 8

3

√
L∆1ηλa

)
=

δ

2T

which gives

a =

(
4
3

√
L∆1ηλ +

√
16L∆1η2λ2

9
+ 2F

)
ln

4T
δ

.

If we choose F = 64L∆1σpλ2−pη2T, we can easily show that a ≤ 7∆1
12 . Therefore, with

probability at least 1− δ
2T we have

EA =

{
either A′ ≤

∣∣∣∣∣ N

∑
t=1

(
η − Lη2) ⟨Zt, θu

t ⟩
∣∣∣∣∣ ≤ 7∆1

12

or
N

∑
t=1

Et

[((
η − Lη2) ⟨Zt, θu

t ⟩
)2
]
> F ln

4T
δ

}
.

Also notice that under the event EN , we have

N

∑
t=1

Et

[((
η − Lη2) ⟨Zt, θu

t ⟩
)2
]

≤η2
N

∑
t=1

Et

[
∥Zt∥2 ∥θu

t ∥
2
]
≤ 4η2L∆1

N

∑
t=1

Et

[
∥θu

t ∥
2
]

≤64L∆1σpλ2−pη2N ≤ 64∆1LT
(σ

λ

)p
λ2η2 ≤ F ≤ F ln

4T
δ

. (5.11)

Under EN , we have that Zt = −∇ f (xt) for all t ≤ N. Therefore, when EN ∩ EA
happens, we have A = A′ ≤ a.

Upperbound for C. We check the conditions to apply Freedman’s inequality. First,
Et

[
Lη2

(
∥θu

t ∥
2 −Et

[
∥θu

t ∥
2
])]

= 0. Further, with probability 1, ∥θu
t ∥

2 ≤ 2λ, thus∣∣∣Lη2
(
∥θu

t ∥
2 −Et

[
∥θu

t ∥
2
])∣∣∣ ≤ Lη2 (4λ2 + 4λ2) = 8Lλ2η2. Hence,

{
Lη2

(
∥θu

t ∥
2 −Et

[
∥θu

t ∥
2
])}

is a bounded martingale difference sequence. Applying Freedman’s inequality for
constants c and G to be chosen, we have

Pr

[∣∣∣∣∣Lη2
N

∑
t=1

(
∥θu

t ∥
2 −Et

[
∥θu

t ∥
2
])∣∣∣∣∣ > c and

N

∑
t=1

Et

[(
Lη2

(
∥θu

t ∥
2 −Et

[
∥θu

t ∥
2
]))2

]
≤ G ln

4T
δ

]

≤ 2 exp

(
− c2

2G ln 4T
δ + 16

3 Lλ2η2c

)
.

We choose c such that

2 exp

(
− c2

2G ln 4T
δ + 16

3 Lλ2η2c

)
=

δ

2T
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which gives

c =

(
8
3

Lλ2η2 +

√
64L2λ4η4

9
+ 2G

)
ln

4T
δ

.

If we choose G = 256L2σpλ4−pη4T, a simple calculation shows that c ≤ 7∆1
48 . we can

show that with probability at least 1− δ
2T , the following event happens

EC =

{
either C ≤

∣∣∣∣∣Lη2
N

∑
t=1

(
∥θu

t ∥
2 −Et

[
∥θu

t ∥
2
])∣∣∣∣∣ ≤ 7∆1

48

or
N

∑
t=1

Et

[(
Lη2

(
∥θu

t ∥
2 −Et

[
∥θu

t ∥
2
]))2

]
≥ G ln

4T
δ

}
.

Notice that when G = 256L2σpλ4−pη4T, under EN we have

N

∑
t=1

Et

[(
Lη2

(
∥θu

t ∥
2 −Et

[
∥θu

t ∥
2
]))2

]
≤8Lλ2η2

N

∑
t=1

Et

[∣∣∣Lη2
(
∥θu

t ∥
2 −Et

[
∥θu

t ∥
2
])∣∣∣] ≤ 16L2λ2η4

N

∑
t=1

E
[
∥θu

t ∥
2
]

≤256L2σpλ4−pη4N ≤ G < G ln
4T
δ

. (5.12)

Therefore, when EN ∩ EC happens, we have C ≤ c.
Finally, combining all the bounds for A, B, C, D using union bound and selecting

λ and η appropriately to simplify the constants, we obtain the lemma.

Proof of Lemma 5.3.4. We have

E [exp (Zt) | Ft−1] exp
((

3z2
t Lη2

t ∆t + 6L2z2
t η4

t λ2
t

)
E
[
∥θu

t ∥
2 | Ft−1

])
(a)
≤ E

[
exp

(
zt

((
Lη2

t − ηt
)
⟨∇ f (xt), θu

t ⟩+ Lη2
t

(
∥θu

t ∥
2 −E

[
∥θu

t ∥
2 | Ft−1

])))
| Ft−1

]
(b)
≤ exp

(
E

[
3
4

(
zt

((
Lη2

t − ηt
)
⟨∇ f (xt), θu

t ⟩+ Lη2
t

(
∥θu

t ∥
2 −E

[
∥θu

t ∥
2 | Ft−1

])))2
| Ft−1

])
(c)
≤ exp

(
E

[
3
2

z2
t η2

t ∥∇ f (xt)∥2 ∥θu
t ∥

2 | Ft−1

]
+ E

[
3
2

L2z2
t η4

t ∥θu
t ∥

4 | Ft−1

])
(d)
≤ exp

(
3z2

t Lη2
t ∆tE

[
∥θu

t ∥
2 | Ft−1

]
+ 6L2z2

t η4
t λ2

t E
[
∥θu

t ∥
2 | Ft−1

])
= exp

((
3z2

t Lη2
t ∆t + 6L2z2

t η4
t λ2

t

)
E
[
∥θu

t ∥
2 | Ft−1

])
.

For (a) we use Lemma 5.3.2. For (b) we use Lemma 5.2.2. Notice that

E [⟨∇ f (xt), θu
t ⟩] = E

[
∥θu

t ∥
2
∗ −E

[
∥θu

t ∥
2
∗ | Ft−1

]]
= 0,
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and since ∥θu
t ∥ ≤ 2λt and ∥∇ f (xt)∥ ≤

√
2L∆t for an L-smooth function, we have∣∣∣(Lη2

t − ηt
)
⟨∇ f (xt), θu

t ⟩+ Lη2
t

(
∥θu

t ∥
2 −E

[
∥θu∥2 | Ft−1

])∣∣∣
≤2ηtλt ∥∇ f (xt)∥+ Lη2

t

(
∥θu

t ∥
2 + E

[
∥θu∥2 | Ft−1

])
≤2ηtλt ∥∇ f (xt)∥+ 8Lη2

t λ2
t

≤2ηtλt
√

2L∆t + 8Lη2
t λ2

t .

Thus zt ≤ 1
2ηtλt

√
2L∆t+8Lη2

t λ2
t
. For (c) we use (a+ b)2 ≤ 2a2 + 2b2 and E

[
(X−E [X])2

]
≤

E
[
X2]. For (d), we use ∥∇ f (xt)∥2 ≤ 2L∆t and ∥θu

t ∥ ≤ 2λt. We obtain

E [exp (Zt) | Ft−1] ≤ 1.

Therefore

E [exp (St) | Ft−1] = exp (St−1)E [exp (Zt) | Ft−1]

≤ exp (St−1)

which means (exp (St))t≥1 is a supermartingale. By Ville’s inequality, we have, for
all k ≥ 1

Pr
[

Sk ≥ log
1
δ

]
≤ δE [exp (S1)] ≤ δ.

In other words, with probability at least 1− δ, for all k ≥ 1

k

∑
t=1

Zt ≤ log
1
δ

.

Plugging in the definition of Zt we have

1
2

k

∑
t=1

ztηt ∥∇ f (xt)∥2 +
k

∑
t=1

(zt∆t+1 − zt∆t)

≤ log
1
δ
+

k

∑
t=1

3ztηt

2

∥∥∥θb
t

∥∥∥2

+
k

∑
t=1

((
3z2

t Lη2
t ∆t + 6L2z2

t η4
t λ2

t + ztLη2
t

)
E
[
∥θu

t ∥
2 | Ft−1

])
.

Note that we have zt is a decreasing sequence by construction (see the proof of
Proposition 5.3.5 below). Hence, the LHS of the above inequality can be bounded by

LHS =
1
2

k

∑
t=1

ztηt ∥∇ f (xt)∥2 + zk∆k+1 − z1∆1 +
k

∑
t=2

(zk−1 − zk)∆k

≥ 1
2

k

∑
t=1

ztηt ∥∇ f (xt)∥2 + zk∆k+1 − z1∆1.

We obtain the desired inequality.
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Proof of Proposition 5.3.5. We will prove by induction on k that

1
2

k

∑
i=1

ηi ∥∇ f (xi)∥2 + ∆k+1 ≤
(√

∆1 + 2
√

AC1

)2
.

The base case k = 0 is trivial. Suppose the statement is true for all t ≤ k ≤ ℓ.
Now we show for k + 1. Recall that

zt =
1

2Ptηtλt maxi≤t
√

2L∆i + 8QtLη2
t λ2

t
.

Let us choose

Pt =
C1

λtηt
√

2L
≥ 1

Qt =
C2

1

√
A

2Lη2
t λ2

t
≥ 1.

We have

zt =
1

2C1 maxi≤t
√

∆i + 4C2
1

√
A

.

Now, note that (zt)t≥1 is a decreasing sequence. By the induction hypothesis maxi≤k
√

∆i ≤√
∆1 + 2

√
AC1. Hence:

zt

zk
=

2C1 maxi≤k
√

∆i + 4C2
1

√
A

2C1 maxi≤t
√

∆i + 4C2
1

√
A

≤
2C1

(√
∆1 + 2

√
AC1

)
+ 4C2

1

√
A

2C1
√

∆1 + 4C2
1

√
A

=

√
∆1 + 4

√
AC1√

∆1 + 2
√

AC1
≤ 2.

By the choice of λt, for all t ≤ k, ∥∇ f (xt)∥ ≤ λt
2 , we can apply the second part of

Lemma 5.2.1 to obtain ∥∥∥θb
t

∥∥∥ ≤ 4σpλ
1−p
t ;

E
[
∥θu

t ∥
2 | Ft−1

]
≤ 40σpλ

2−p
t .
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Thus,

1
2

zk

k

∑
t=1

ηt ∥∇ f (xt)∥2 + zk∆k+1

≤z1∆1 + log
1
δ
+

k

∑
t=1

3ztηt

2

∥∥∥θb
t

∥∥∥2

+
k

∑
t=1

((
3z2

t Lη2
t ∆t + 6L2z2

t η4
t λ2

t + ztLη2
t

)
E
[
∥θu

t ∥
2 | Ft−1

])
≤z1∆1 + log

1
δ
+ 24σ2p

k

∑
t=1

ztηtλ
2
t

(
1
λt

)2p

+ 40σp
k

∑
t=1

((
3z2

t ∆t + 6z2
t Lη2

t λ2
t + zt

)
Lη2

t λ2
t

(
1
λt

)p)
.

Since zt
zk
≤ 2, we have

1
2

k

∑
t=1

ηt ∥∇ f (xt)∥2 + ∆k+1

≤ z1∆1

zk
+

1
zk

log
1
δ
+ 48σ2p

k

∑
t=1

ηtλ
2
t

(
1
λt

)2p

+ 80σp
k

∑
t=1

((
3zt∆t + 6ztLη2

t λ2
t + 1

)
Lη2

t λ2
t

(
1
λt

)p)
(a)
≤
√

∆1 + 4
√

AC1√
∆1 + 2

√
AC1

∆1 + 2C1

(√
∆1 + 4

√
AC1

)
log

1
δ
+ 48σ2pC2

k

∑
t=1

Lη2
t λ2

t

(
1
λt

)p

+ 80σp
k

∑
t=1


 3

(√
∆1 + 2

√
AC1

)2

2C1

(√
∆1 + 2

√
AC1

) +
6

8Qt
+ 1

 Lη2
t λ2

t

(
1
λt

)p


(b)
≤∆1 + 2

√
∆1
√

AC1 + 2C1

(√
∆1 + 4

√
AC1

)
log

1
δ
+ 48σ2pC2C3

+ 80σp

3
(√

∆1 + 2
√

AC1

)
2C1

+
7
4

C3

≤∆1 + 2
√

∆1
√

AC1 + 2C1

(√
∆1 + 4

√
AC1

)(
log

1
δ
+

60σpC3

C2
1

)
+ 48σ2pC2C3 + 140σpC3

(c)
≤∆1 + 2

√
∆1
√

AC1 + 2C1

(√
∆1 + 4

√
AC1

) √A
8

+ AC2
1

≤
(√

∆1 + 2
√

AC1

)2
.
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For (a), we use
(

1
λt

)p
≤ C2Lηt and the induction hypothesis. For (b), we use

∑T
t=1 L

(
1
λt

)p
λ2

t η2
t ≤ C3 and Qt ≥ 1. For (c), we have

log
1
δ
+

60σpC3

C2
1
≤
√

A
8

48σ2pC2C3 + 140σpC3 ≤ AC2
1 ,

since

A ≥ 64
(

log
1
δ
+

60σpC3

C2
1

)2

+
48σ2pC2C3 + 140σpC3

C2
1

.

This concludes the proof.

Lemma 5.7.1. The choices of ηt and λt in Theorem 5.3.1 satisfy the condition (1)-(3) of
Proposition 5.3.5 for

C1 =

√
∆1

4
√

2γ
,

C2 =
1

σp ,

C3 =
∆1

2048σpγ
.

Proof. We verify for the first case. The second follows exactly the same. First, we
have p > 1 hence

ηtλt
√

2L =

√
∆1T

1−p
3p−2

8
√

Lγ

√
2L ≤

√
∆1

4
√

2γ
= C1.

Since ηt =
√

∆1T
1−p
3p−2

8λt
√

Lγ
, p > 1 and λt ≥

(
8γ√
L∆1

) 1
p−1 T

1
3p−2 σ

p
p−1

ηtλ
p
t =

√
∆1T

1−p
3p−2

8
√

Lγ
λ

p−1
t

≥
√

∆1T
1−p

3p−2

8
√

Lγ

8γ√
L∆1

T
p−1

3p−2 σp

=
σp

L
,

which gives

1
Lηt

(
1
λt

)p

≤ 1
σp = C2.

Finally, we have λt ≥ 321/pσT
1

3p−2 hence(
1
λt

)p

T
p

3p−2 ≤ 1
32σp .
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Therefore,

T

∑
t=1

L
(

1
λt

)p

λ2
t η2

t =
T

∑
t=1

L
(

1
λt

)p
√∆1T

1−p
3p−2

8
√

Lγ

2

=
1
T

T

∑
t=1

L
(

1
λt

)p

T · T
2−2p
3p−2

∆1

64Lγ

=
1
T

T

∑
t=1

(
1
λt

)p

T
p

3p−2
∆1

64γ2

≤ 1
T

T

∑
t=1

1
32σp

∆1

64γ2

=
1

32σp
∆1

64γ2 ≤
∆1

2048σpγ
.

Proof of Theorem 5.3.1. Note that η ≤ T
1−p
3p−2

16
√

90Lγ
≤ 1

L . We have that with probability at

least 1− δ, event E(δ) happens. Conditioning on this event, we verify the conditions
of Proposition 5.3.5. We select the following constants

C1 =

√
∆1

4
√

2γ
; C2 =

1
σp ; C3 =

∆1

2048σpγ
; A = 256γ2.

We verify in Lemma 5.7.1 that for these choice of constants, conditions (1)-(3) of
Proposition 5.3.5 are satisfied. Furthermore, we have

64
(

log
1
δ
+

60σpC3

C2
1

)2

+
48σ2pC2C3 + 140σpC3

C2
1

= 64
(

log
1
δ
+ 60 log

1
δ

32
∆1

∆1

2048

)2

+

(
48

∆1

2048
+ 140

∆1

2048

)
32
∆1

≤ 256γ2 = A.

We only need to show that, for all t, ∥∇ f (xt)∥ ≤ λt
2 . We will show this by induction.

Indeed, for the base case we have ∥∇ f (x1)∥ ≤
√

2L∆1 ≤ λ1
2 . Suppose that it is true

for all t ≤ k. We will prove that ∥∇ f (xk+1)∥ ≤ λk+1
2 . By Proposition 5.3.5 and the

induction hypothesis

∆k+1 ≤
(√

∆1 + 2
√

AC1

)2
≤
(√

∆1 +

√
∆1

2
√

2γ
× 16γ

)2

≤ 45∆1.

Thus, we get

∥∇ f (xk+1)∥ ≤
√

2L∆k+1 ≤
√

90L∆1 ≤
λk+1

2

as needed. From Proposition 5.3.5, we have

η

2

T

∑
t=1
∥∇ f (xt)∥2 + ∆k+1 ≤ 45∆1.
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Therefore

1
T

T

∑
t=1
∥∇ f (xt)∥2 ≤ 90∆1

ηT

= 720
√

∆1Lγ max

{(
8γ√
L∆1

) 1
p−1

T
2−2p
3p−2 σ

p
p−1 ; 2

√
90L∆1T

1−2p
3p−2 ; 32

1
p σT

2−2p
3p−2

}
.

Theorem 5.7.2. Assume that f satisfies Assumption (1’), (2), (3), (4). Let γ = max
{

log 1
δ ; 1
}

and ∆1 = f (x1)− f ∗. For unknown T, we choose λt and ηt such that

λt = max

{(
8γ√
L∆1

) 1
p−1 (

2t (1 + log t)2
) 1

3p−2
σ

p
p−1 ; 2

√
90L∆1; 32

1
p σ
(

2t (1 + log t)2
) 1

3p−2

}
,

ηt =

√
∆1

(
2t (1 + log t)2

) 1−p
3p−2

8λt
√

Lγ
.

Then with probability at least 1− δ

1
T

T

∑
t=1
∥∇ f (xt)∥2 ≤ 720

√
∆1Lγ max

{(
8γ√
L∆1

) 1
p−1 (

2 (1 + log T)2
) p

3p−2
σ

p
p−1 T

2−2p
3p−2 ;

2
√

90L∆1

(
2 (1 + log T)2

) p−1
3p−2 T

1−2p
3p−2 ; 32

1
p σ
(

2 (1 + log T)2
) p

3p−2 T
2−2p
3p−2

}
.

We again verify the conditions of Proposition 5.3.5 for the choices of ηt and λt in
Theorem 5.7.2.

Lemma 5.7.3. The choices of ηt and λt in Theorem 5.7.2 satisfy the condition (1)-(3) of
Proposition 5.3.5 for

C1 =

√
∆1

4
√

2γ
,

C2 =
1

σp ,

C3 =
∆1

2048σpγ
.

The proof utilizes the following fact:

Fact 5.7.4. We have ∑∞
t=1

1
2t(1+log t)2 < 1.

Proof. First, we have p > 1 hence

ηtλt
√

2L =

√
∆1

(
2t (1 + log t)2

) 1−p
3p−2

8
√

Lγ

√
2L

≤
√

∆1

4
√

2γ
= C1.
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Since ηt =
√

∆1T
1−p
3p−2

8λt
√

Lγ
, p > 1 and λt ≥

(
8γ√
L∆1

) 1
p−1
(

2t (1 + log t)2
) 1−p

3p−2
σ

p
p−1

ηtλ
p
t =

√
∆1

(
2t (1 + log t)2

) 1−p
3p−2

8
√

Lγ
λ

p−1
t

≥

√
∆1

(
2t (1 + log t)2

) 1−p
3p−2

8
√

Lγ

8γ√
L∆1

(
2t (1 + log t)2

) p−1
3p−2

σp

=
σp

L
,

which gives

1
Lηt

(
1
λt

)p

≤ 1
σp = C2.

Finally, we have λt ≥ 32
1
p σ
(

2t (1 + log t)2
) 1

3p−2
, hence(

1
λt

)p (
2t (1 + log t)2

) p
3p−2 ≤ 1

32σp . (5.13)

Therefore,

T

∑
t=1

L
(

1
λt

)p

λ2
t η2

t =
T

∑
t=1

L
(

1
λt

)p (
2t (1 + log t)2

) 2−2p
3p−2

( √
∆1

8
√

Lγ

)2

=
T

∑
t=1

L
1

2t (1 + log t)2

(
1
λt

)p (
2t (1 + log t)2

) p
3p−2 ∆1

64γ2

≤
T

∑
t=1

L
1

2t (1 + log t)2
1

32σp
∆1

64γ2 (by (5.13))

=
1

32σp
∆1

64γ2

T

∑
t=1

1

2t (1 + log t)2

≤ 1
32σp

∆1

64γ2 ≤
∆1

2048σpγ
. (by Fact 5.7.4)

Proof of Theorem 5.7.2. Note that

ηt =

√
∆1

(
2t (1 + log t)2

) 1−p
3p−2

8λt
√

Lγ

≤

(
2t (1 + log t)2

) 1−p
3p−2

16Lγ
√

90

≤ 1
L

.

Note that with Lemma 5.7.3, verifying the conditions of Proposition 5.3.5 is identical
to the proof of theorem 5.3.1. We have that with probability at least 1− δ, event E(δ)
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from 5.3.5 happens. We have with probability at least 1− δ:

1
2

T

∑
t=1

ηt ∥∇ f (xt)∥2 + ∆k+1 ≤ 45∆1.

Since ηt is decreasing, we have

1
T

T

∑
t=1
∥∇ f (xt)∥2 ≤ 90∆1

TηT
.

This means that

1
T

T

∑
t=1
∥∇ f (xt)∥2 ≤ 720

√
∆1Lγ max

{(
8γ√
L∆1

) 1
p−1 (

2 (1 + log T)2
) p

3p−2
σ

p
p−1 T

2−2p
3p−2 ;

2
√

90L∆1

(
2 (1 + log T)2

) p−1
3p−2 T

1−2p
3p−2 ; 32

1
p σ
(

2 (1 + log T)2
) p

3p−2 T
2−2p
3p−2

}
.

5.8 Missing Proofs from Section 5.4

Lemma 5.8.1. Suppose that ηt ≤ 1
4L and assume f satisfies Assumption (1), (2), (3) as well

as the following condition

f (y)− f (x) ≤ ⟨∇ f (x), y− x⟩+ G ∥y− x∥+ L
2
∥y− x∥2 , ∀y, x ∈ X . (5.14)

Then the iterate sequence (xt)t≥1 output by Algorithm 7 satisfies the following:

ηt∆t+1 ≤ Dψ (x∗, xt)−Dψ (x∗, xt+1) + ηt ⟨x∗ − xt, θu
t ⟩+ ηt

〈
x∗ − xt, θb

t

〉
+ 2η2

t

(
∥θu

t ∥
2
∗ −E

[
∥θu

t ∥
2
∗ | Ft−1

])
+ 2η2

t E
[
∥θu

t ∥
2
∗ | Ft−1

]
+ 2η2

t

∥∥∥θb
t

∥∥∥2

∗
+ 2G2η2

t .

Proof. By condition (5.14) and convexity,

f (xt+1)− f (x∗)
≤ f (xt+1)− f (xt)︸ ︷︷ ︸

condition (5.14)

+ f (xt)− f (x∗)︸ ︷︷ ︸
convexity

≤ ⟨∇ f (xt) , xt+1 − xt⟩+
L
2
∥xt − xt+1∥2 + G ∥xt − xt+1∥+ ⟨∇ f (xt) , xt − x∗⟩

= ⟨∇ f (xt) , xt+1 − x∗⟩+ L
2
∥xt − xt+1∥2 + G ∥xt − xt+1∥

= ⟨θt, x∗ − xt+1⟩+
〈
∇̃ f (xt), xt+1 − x∗

〉
+

L
2
∥xt − xt+1∥2 + G ∥xt − xt+1∥ .

By the optimality condition, we have〈
ηt∇̃ f (xt) +∇xDψ (xt+1, xt) , x∗ − xt+1

〉
≥ 0
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and thus 〈
ηt∇̃ f (xt), xt+1 − x∗

〉
≤
〈
∇xDψ (xt+1, xt) , x∗ − xt+1

〉
.

Note that〈
∇xDψ (xt+1, xt) , x∗ − xt+1

〉
= ⟨∇ψ (xt+1)−∇ψ (xt) , x∗ − xt+1⟩
= Dψ (x∗, xt)−Dψ (xt+1, xt)−Dψ (x∗, xt+1) .

Thus

ηt

〈
∇̃ f (xt), xt+1 − x∗

〉
≤ Dψ (x∗, xt)−Dψ (x∗, xt+1)−Dψ (xt+1, xt)

≤ Dψ (x∗, xt)−Dψ (x∗, xt+1)−
1
2
∥xt+1 − xt∥2 ,

where we have used that Dψ (xt+1, xt) ≥ 1
2 ∥xt+1 − xt∥2 by the strong convexity of

ψ.
Combining the two inequalities, and using the assumption that Lηt ≤ 1

4 , we
obtain

ηt∆t+1 + Dψ (x∗, xt+1)−Dψ (x∗, xt)

≤ ηt ⟨θt, x∗ − xt+1⟩+
Lηt

2
∥xt − xt+1∥2 + Gηt ∥xt − xt+1∥ −

1
2
∥xt+1 − xt∥2

≤ ηt ⟨θt, x∗ − xt⟩+ ηt ⟨θt, xt − xt+1⟩ −
3
8
∥xt+1 − xt∥2 + Gηt ∥xt − xt+1∥

≤ ηt ⟨θt, x∗ − xt⟩+ η2
t ∥θt∥2

∗ + 2G2η2
t

≤ ηt

〈
θu

t + θb
t , x∗ − xt

〉
+ 2η2

t ∥θu
t ∥

2
∗ + 2η2

t

∥∥∥θb
t

∥∥∥2

∗
+ 2G2η2

t .

This is what we want to show.

Proof of Lemma 5.4.4. We have

E [exp (Zt) | Ft−1]× exp
((

3
8λ2

t
+ 24z2

t η4
t λ2

t

)
E
[
∥θu

t ∥
2
∗ | Ft−1

])
(a)
≤E

[
exp

(
zt

(
ηt ⟨x∗ − xt, θu

t ⟩+ 2η2
t

(
∥θu

t ∥
2
∗ −E

[
∥θu

t ∥
2
∗ | Ft−1

])))
| Ft−1

]
(b)
≤ exp

(
E

[
3
4

(
zt

(
ηt ⟨x∗ − xt, θu

t ⟩+ 2η2
t

(
∥θu

t ∥
2
∗ −E

[
∥θu

t ∥
2
∗ | Ft−1

])))2
| Ft−1

])
(c)
≤ exp

((
3
2

z2
t η2

t ∥x∗ − xt∥2
E
[
∥θu

t ∥
2
∗ | Ft−1

]
+ 6z2

t η4
t E
[
∥θu

t ∥
4
∗ | Ft−1

]))
(d)
≤ exp

((
3
2

z2
t η2

t ∥x∗ − xt∥2 + 24z2
t η4

t λ2
t

)
E
[
∥θu

t ∥
2
∗ | Ft−1

])
(e)
≤ exp

((
3

8λ2
t
+ 24z2

t η4
t λ2

t

)
E
[
∥θu

t ∥
2
∗ | Ft−1

])
.

For (a), we use Lemma 5.4.3. For (b), we use Lemma 5.2.2. Notice that

E [⟨x∗ − xt, θu
t ⟩] = E

[
∥θu

t ∥
2
∗ −E

[
∥θu

t ∥
2
∗ | Ft−1

]]
= 0,
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and since ∥θu
t ∥∗ ≤ 2λt, we have∣∣∣ηt ⟨x∗ − xt, θu

t ⟩+ 2η2
t

(
∥θu

t ∥
2
∗ −E

[
∥θu

t ∥
2
∗ | Ft−1

])∣∣∣
≤ ηt ∥x∗ − xt∥ ∥θu

t ∥∗ + 2η2
t

(
∥θu

t ∥
2
∗ + E

[
∥θu

t ∥
2
∗ | Ft−1

])
≤ 2ηtλt ∥x∗ − xt∥+ 16η2

t λ2
t

≤ 2ηtλt

√
2Dψ (x∗, xt) + 16η2

t λ2
t .

Thus, zt ≤ 1
2ηtλt
√

2Dψ(x∗,xt)+16η2
t λ2

t
. For (c), we use the inequalities (a + b)2 ≤ 2a2 +

2b2 and E
[
(X−E [X])2

]
≤ E

[
X2]. For (d), we use the fact ∥θu

t ∥
2
∗ ≤ 4λ2

t to get

E
[
∥θu

t ∥
4
∗ | Ft−1

]
≤ 4λ2

t E
[
∥θu

t ∥
2
∗ | Ft−1

]
. For (e), we use the fact that ∥θu

t ∥∗ ≤ 2λt

and

ztηt ∥x∗ − xt∥ ≤
ηt ∥x∗ − xt∥

2ηtλt

√
2Dψ (x∗, xt)

≤ 1
2λt

.

We obtain E [exp (Zt) | Ft−1] ≤ 1. Therefore

E [exp (St) | Ft−1] = exp (St−1)E [exp (Zt) | Ft−1] ≤ exp (St−1) .

which means (exp (St))t≥1 is a supermartingale. By Ville’s inequality, we have, for
all k ≥ 1

Pr
[

Sk ≥ log
1
δ

]
≤ δE [exp (S1)] ≤ δ.

In other words, with probability at least 1− δ, for all k ≥ 1

k

∑
t=1

Zt ≤ log
1
δ

.

Plugging in the definition of Zt we have

k

∑
t=1

ztηt∆t+1 +
k

∑
t=1

(
ztDψ (x∗, xt+1)− ztDψ (x∗, xt)

)
≤ log

1
δ
+

k

∑
t=1

ztηt

〈
x∗ − xt, θb

t

〉
+ 2

k

∑
t=1

ztη
2
t

∥∥∥θb
t

∥∥∥2

∗

+
k

∑
t=1

((
2ztη

2
t +

3
8λ2

t
+ 24z2

t η4
t λ2

t

)
E
[
∥θu

t ∥
2
∗ | Ft−1

])
.

Note that we have zt is a decreasing sequence, hence the LHS of the above inequality
can be bounded by

LHS =
k

∑
t=1

ztηt∆t+1 + zkDψ (x∗, xk+1)− z1Dψ (x∗, x1) +
k

∑
t=2

(zk−1 − zk)Dψ (x∗, xk)

≥
k

∑
t=1

ztηt∆t+1 + zkDψ (x∗, xk+1)− z1Dψ (x∗, x1) .



Chapter 5. Heavy-Tailed Noise: Clipped SGD and Clipped (Accelerated) SMD 87

We obtain from here the desired inequality.

Proof of Proposition 5.4.5. We will prove by induction that on k

k

∑
i=1

ηi∆i+1 + Dψ (x∗, xk+1) ≤
1
2
(R1 + 8AC1)

2 .

The base case k = 0 is trivial. We have Dψ (x∗, x1) =
R2

1
2 . Suppose the statement is

true for all t ≤ k ≤ ℓ. Now, we show for k + 1. Recall that

zt =
1

2ηtλt maxi≤t

√
2Dψ (x∗, xi) + 16Qη2

t λ2
t

.

Let us choose Q = A > 1. By the induction hypothesis, we have maxi≤t

√
2Dψ (x∗, xi) ≤

R1 + 8AC1, which implies

zk ≥
1

2ηkλk (R1 + 8AC1) + 16Aη2
k λ2

k
=

1
2C1 (R1 + 16AC1)

.

For an upperbound, since
√

2Dψ (x∗, x1) = R1, we have:

zt ≤
1

2C1 (R1 + 8AC1)
.

Since zk is a decreasing sequence, we have

zk

k

∑
t=1

ηt∆t+1 + zkDψ (x∗, xk+1) ≤ z1Dψ (x∗, x1) + log
1
δ
+

k

∑
t=1

ztηt

〈
x∗ − xt, θb

t

〉
+ 2

k

∑
t=1

ztη
2
t

∥∥∥θb
t

∥∥∥2

∗

+
k

∑
t=1

((
2ztη

2
t +

3
8λ2

t
+ 24z2

t η4
t λ2

t

)
E
[
∥θu

t ∥
2
∗ | Ft−1

])
.

By the choice of λt, for all t ≤ k, ∥∇ f (xt)∥∗ ≤
λt
2 , we can apply Lemma 5.2.1 and

have ∥∥∥θb
t

∥∥∥
∗
≤ 4σpλ

1−p
t ;

E
[
∥θu

t ∥
2
∗ | Ft−1

]
≤ 40σpλ

2−p
t .
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Thus, we have

zk

k

∑
t=1

ηt∆t+1 + zkDψ (x∗, xk+1)

≤z1Dψ (x∗, x1) + log
1
δ
+ 4

k

∑
t=1

ztηtσ
pλ

1−p
t

√
2Dψ (x∗, xt) + 32

k

∑
t=1

ztη
2
t σ2pλ

2−2p
t

+ 40
k

∑
t=1

((
2ztη

2
t +

3
8λ2

t
+ 24z2

t η4
t λ2

t

)
σpλ

2−p
t

)
≤z1Dψ (x∗, x1) + log

1
δ
+

2C1 (R1 + 8AC1) σp

C1 (R1 + 8AC1)

k

∑
t=1

(
1
λt

)p

+
16C2

1σ2p

C1 (R1 + 8AC1)

k

∑
t=1

(
1
λt

)2p

+ 40

(
C2

1
C1 (R1 + 8AC1)

+
3
8
+

6C4
1

C2
1 (R1 + 8AC1)

2

)
σp

k

∑
t=1

(
1
λt

)p

≤ R2
1

4
(
C1R1 + 8AC2

1

) + log
1
δ
+ 2σpC2 +

2σ2pC2C3

A
+ 24σpC2

≤ R2
1

4
(
C1R1 + 8AC2

1

) + A,

where for the last inequality we use ∑k
t=1

(
1
λt

)p
≤ C2 and

(
1
λt

)2p
≤ C3

(
1
λt

)p
. We

obtain

k

∑
t=1

ηt∆t+1 + Dψ (x∗, xk+1) ≤ 2C1 (R1 + 16AC1)

(
R2

1

4
(
C1R1 + 8AC2

1

) + A

)

=
1
2

R2
1 +

4AC2
1 R2

1

C1R1 + 8AC2
1
+ 2A

(
C1R1 + 16AC2

1
)

≤ 1
2

R2
1 + 6AC1R1 + 32A2C2

1

≤ 1
2
(R1 + 8AC1)

2 .

Proof of Theorem 5.4.1. Note that our choice of η ensures η ≤ R1
16

1
4LR1

≤ 1
4L . We have

that with probability at least 1− δ, event E(δ) happens. Conditioning on this event,
in 5.4.5 we choose

C1 =
R1

24γ
; C2 =

γ

26σp ; C3 =
γ

26Tσp ; A = 3γ.
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We have

λtηt = C1

T

∑
t=1

(
1
λt

)p

≤
T

∑
t=1

( γ

26T

) 1
σp = C2(

1
λt

)2p

≤ 1
σp

( γ

26T

)( 1
λt

)p

= C3

(
1
λt

)p

max
{

log
1
δ
+ 26σpC2 +

2σ2pC2C3

A
; 1
}
≤ 3γ = A.

We only need to show that for all t

∥∇ f (xt)∥∗ ≤
λt

2
.

We will show this by induction. Indeed, we have

∥∇ f (x1)∥∗ ≤ ∇1 ≤
λ1

2
.

Suppose that it is true for all t ≤ k. We prove that

∥∇ f (xk+1)∥∗ ≤
λk+1

2
.

By 5.4.5 we have

∥xk+1 − x∗∥ ≤
√

2Dψ (x∗, xk+1) ≤ R1 + 8AC1 = 2R1.

Thus

∥∇ f (xk+1)∥∗ ≤ ∥∇ f (xk+1)−∇ f (x∗)∥∗ + ∥∇ f (x1)−∇ f (x∗)∥∗ + ∥∇ f (x1)∥∗
≤ L ∥xk+1 − x∗∥+ L ∥x1 − x∗∥+∇1

≤ 3LR1 +∇1 ≤
λk+1

2

as needed. Therefore from Lemma 5.4.4 we have

η
T

∑
t=1

∆t+1 + Dψ (x∗, xT+1) ≤ 2R2
1,

which gives

1
T

T+1

∑
t=2

∆t ≤
2R2

1
η

= 48R1 max
{

26
1
p T

1−p
p σγ

p−1
p ; 2 (3LR1 +∇1) T−1γ

}
.

Theorem 5.8.2. Assume that f satisfies Assumption (1), (2), (3), (4) and (5). Let γ =

max
{

log 1
δ ; 1
}

; R1 =
√

2Dψ (x∗, x1) assume that ∇1 is an upper bound of ∥∇ f (x1)∥∗.
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For unknown T, we choose

λt = max


(

52t (1 + log t)2

γ

)1/p

σ; 2 (3LR1 +∇1)

 , and

ηt =
R1

24λtγ
=

R1

24γ
min


(

52t (1 + log t)2

γ

)−1/p

σ−1;
1
2
(3LR1 +∇1)

−1

 .

Then with probability at least 1− δ

1
T

T+1

∑
t=2

∆t ≤ 48R1 max
{

52
1
p T

1−p
p (1 + log T)

2
p σγ

p−1
p ; 2 (3LR1 +∇1) T−1γ

}
= Õ

(
T

1−p
p

)
.

Proof. We can follow the similar steps. Notice that (ηt) is a decreasing sequence. We
also use Fact 5.7.4 to verify the second condition of Proposition 5.4.5. The proof is
omitted.

Proof of Theorem 5.4.2. Note that ηt ≤ 1
4L . We have that with probability at least 1− δ,

event E(δ) happens. Conditioning on this event, in 5.4.5. We choose

C1 =
c1

24
; C2 =

1
26c2

; C3 =
1

52c2
; A = γ +

2σp

c2
.

We verify the conditions of Proposition 5.4.5

λtηt = C1

T

∑
t=1

(
1
λt

)p

≤
T

∑
t=1

1
52t(1 + log t)2c2

≤ 1
26c2

= C2(
1
λt

)2p

≤ 1
52tc2

(
1
λt

)p

≤ C3

(
1
λt

)p

max
{

log
1
δ
+ 26σpC2 +

2σ2pC2C3

A
; 1
}

= max
{

log
1
δ
+

σp

c2
+

σp

c2
; 1
}
≤ A,

where we have 2σ2pC2C3
A ≤ 2σ2pC2C3 × c2

2σp ≤ σp

c2
. Also, note that

∥∇ f (xt)∥∗ ≤ ∥∇ f (xt)−∇ f (x1)∥∗ + ∥∇ f (x1)∥∗

≤ L ∥xt − x1∥∗ + ∥∇ f (x1)∥∗ ≤
λt

2
.

Therefore, from Lemma 5.4.4, we have

ηT

T

∑
t=1

∆t+1 + Dψ (x∗, xT+1) ≤
1
2
(R1 + 8AC1)

2

=
1
2

(
R1 +

c1

3

(
γ +

2σp

c2

))2
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which gives

1
T

T+1

∑
t=2

∆t ≤
1

2TηT

(
R1 +

c1

3

(
γ +

2σp

c2

))2

=
8

Tc1

(
R1 +

c1

3

(
γ +

2σp

c2

))2

·max
{(

52T(1 + log T)2c2
)1/p

; 2
(

L max
i≤T
∥xi − x1∥+∇1

)
;

L
8

}
.

Note that

∥xi − x1∥ ≤ ∥xi − x∗∥+ ∥x1 − x∗∥

≤ 2R1 +
c1

3

(
γ +

2σp

c2

)
which gives us the final convergence rate.

5.9 Clipped Accelerated Stochastic Mirror Descent

In this section, we extend the analysis of Clipped-SMD to the case of Clipped Ac-
celerated Stochastic Mirror Descent (Algorithm 8). We will see that the analysis is
basically the same with little modification. We present in Algorithm 8 the clipped
version of accelerated stochastic mirror descent (see (Lan, 2020)), where the clipped
gradient ∇̃ f (xt) is used to update the iterates in place of the stochastic gradient
∇̂ f (xt).

We use the following additional assumption:
(5’) Global minimizer: We assume that ∇ f (x∗) = 0.

Theorem 5.9.1. Assume that f satisfies Assumption (1), (2), (3), (4) and (5’). Let γ =

max
{

log 1
δ ; 1
}

; and R1 =
√

2Dψ (x∗, x1).
1. For known T, we choose a constant c and λt and ηt such that

c = max

104;
4 (T + 1)

(
26T

γ

) 1
p

σ

γLR1

 ,

λt =
cR1γLαt

8
= max

{
104R1γL
6(t + 1)

;
T + 1
t + 1

(
26T

γ

)1/p

σ

}
,

ηt =
1

3cγ2Lαt
=

R1

24γ
min

{
4(t + 1)
104R1γL

;
t + 1
T + 1

(
26T

γ

)−1/p

σ−1

}
.

Then with probability at least 1− δ

f (yT+1)− f (x∗) ≤ 6 max
{

104Lγ2R2
1(T + 1)−2; 4R1 (T + 1)−1 (26T)

1
p γ

p−1
p σ

}
.
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2. For unknown T, we choose ct, λt and ηt such that

ct = max

104;
4 (t + 1)

(
52t(1+log t)2

γ

) 1
p

σ

γLR1

 ,

λt =
ctR1γLαt

8
= max

104R1γL
4(t + 1)

;

(
52t (1 + log t)2

γ

)1/p

σ

 ,

ηt =
1

3ctγ2Lαt
=

R1

24γ
min

 4(t + 1)
104R1γL

;

(
52t (1 + log t)2

γ

)−1/p

σ−1

 .

Then with probability at least 1− δ

f (yT+1)− f (x∗) ≤ 6 max
{

104Lγ2R2
1(T + 1)−2; 4R1 (T + 1)−1

(
52T (1 + log T)2

) 1
p

γ
p−1

p σ

}
.

Remark 7. One feature of the accelerated algorithm is the interpolation between the two

regimes: When σ is large, the algorithm achieves the O
(

T
1−p

p

)
convergence rate, which is

the same as unaccelerated algorithms; however, when σ is sufficiently small, the algorithm
achieves the accelerated O

(
T−2) rate.

We also start the analysis of accelerated stochastic mirror descent with the fol-
lowing lemma.

Lemma 5.9.2. Assume that f satisfies Assumption (1), (2), (3), (4) and ηt ≤ 1
2Lαt

, the
iterate sequence (xt)t≥1 output by Algorithm 7 satisfies the following

ηt

αt
( f (yt+1)− f (x∗))− ηt (1− αt)

αt
( f (yt)− f (x∗)) + Dψ (x∗, zt+1)−Dψ (x∗, zt)

≤ηt ⟨θu
t , x∗ − zt⟩+ ηt

〈
θb

t , x∗ − zt

〉
+ 2η2

t

(
∥θu

t ∥
2
∗ −E

[
∥θu

t ∥
2
∗ | Ft−1

])
+ 2η2

t

∥∥∥θb
t

∥∥∥2

∗
+ 2η2

t E
[
∥θu

t ∥
2
∗ | Ft−1

]
.
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Proof of Lemma 5.9.2. We have

f (yt+1)− f (x∗) = f (yt+1)− f (xt)︸ ︷︷ ︸
smoothness

+ f (xt)− f (x∗)︸ ︷︷ ︸
convexity

≤ ⟨∇ f (xt) , yt+1 − xt⟩+
L
2
∥yt+1 − xt∥2

+ αt ⟨∇ f (xt) , xt − x∗⟩+ (1− αt) ( f (xt)− f (x∗))
= (1− αt) ⟨∇ f (xt) , yt − xt⟩︸ ︷︷ ︸

convexity

+αt ⟨∇ f (xt) , zt+1 − x∗⟩

+
Lα2

t
2
∥zt+1 − zt∥2 + (1− αt) ( f (xt)− f (x∗))

≤ (1− αt) ( f (yt)− f (xt)) + (1− αt) ( f (xt)− f (x∗))

+ αt ⟨θt, x∗ − zt+1⟩+ αt

〈
∇̃ f (xt), zt+1 − x∗

〉
+

Lα2
t

2
∥zt+1 − zt∥2

≤ (1− αt) ( f (yt)− f (x∗)) + αt ⟨θt, x∗ − zt+1⟩

+ αt

〈
∇̃ f (xt), zt+1 − x∗

〉
+

Lα2
t

2
∥zt+1 − zt∥2 .

By the optimality condition, we have〈
ηt∇̃ f (xt) +∇xDψ (zt+1, zt) , x∗ − zt+1

〉
≥ 0

and thus 〈
ηt∇̃ f (xt), zt+1 − x∗

〉
≤
〈
∇xDψ (zt+1, zt) , x∗ − zt+1

〉
.

Note that〈
∇xDψ (zt+1, zt) , x∗ − zt+1

〉
= ⟨∇ψ (zt+1)−∇ψ (zt) , x∗ − zt+1⟩
= Dψ (x∗, zt)−Dψ (zt+1, zt)−Dψ (x∗, zt+1) .

Thus

ηt

〈
∇̃ f (xt), zt+1 − x∗

〉
≤ Dψ (x∗, zt)−Dψ (x∗, zt+1)−Dψ (zt+1, zt)

≤ Dψ (x∗, zt)−Dψ (x∗, zt+1)−
1
2
∥zt+1 − zt∥2

where we have used that Dψ (zt+1, zt) ≥ 1
2 ∥zt+1 − zt∥2 by the strong convexity of ψ.

We have

f (yt+1)− f (x∗) ≤ (1− αt) ( f (yt)− f (x∗)) + αt ⟨θt, x∗ − zt+1⟩

+
αt

ηt
Dψ (x∗, zt)−

αt

ηt
Dψ (x∗, zt+1) +

(
Lα2

t
2
− αt

2ηt

)
∥zt+1 − zt∥2 .
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Dividing both sides by αt
ηt

and using the condition Lηtαt ≤ 1
2 , we have

ηt

αt
( f (yt+1)− f (x∗)) + Dψ (x∗, zt+1)−Dψ (x∗, zt)

≤ηt (1− αt)

αt
( f (yt)− f (x∗)) + ηt ⟨θt, x∗ − zt⟩

+ ηt ⟨θt, zt − zt+1⟩ −
1− Lηtαt

2
∥zt+1 − zt∥2

≤ηt (1− αt)

αt
( f (yt)− f (x∗)) + ηt ⟨θt, x∗ − zt⟩

+
η2

t ∥θt∥2
∗

2 (1− Lηtαt)

≤ηt (1− αt)

αt
( f (yt)− f (x∗)) + ηt

〈
θu

t + θb
t , x∗ − zt

〉
+ 2η2

t ∥θu
t ∥

2
∗ + 2η2

t

∥∥∥θb
t

∥∥∥2

∗

as needed.

Similarly to the previous section, we define the following variables

Zt = zt

(
ηt

αt
( f (yt+1)− f (x∗))− ηt (1− αt)

αt
( f (yt)− f (x∗))

+ Dψ (x∗, zt+1)−Dψ (x∗, zt)

− ηt

〈
θb

t , x∗ − zt

〉
− 2η2

t

∥∥∥θb
t

∥∥∥2

∗
− 2η2

t E
[
∥θu

t ∥
2
∗ | Ft−1

] )

−
(

3
8λ2

t
+ 24z2

t η4
t λ2

t

)
E
[
∥θu

t ∥
2 | Ft−1

]
,

where zt =
1

2ηtλt maxi≤t

√
2Dψ (x∗, xi) + 16Qη2

t λ2
t

for a constant Q ≥ 1. We also let St = ∑t
i=1 Zi. Following the same analysis as in

previous sections, we can obtain Lemma 5.9.3 and Proposition 5.9.4, for which we
will omit the proofs here. The only step we need to pay attention to when showing
Lemma 5.9.3 is when we bound the sum

k

∑
t=1

ztηt

αt
( f (yt+1)− f (x∗))− ztηt (1− αt)

αt
( f (yt)− f (x∗)) .

If we assume ηt−1
αt−1
≥ ηt(1−αt)

αt
, since zt is a decreasing sequence and α1 = 0, we can

lower bound the above sum by the last term zkηk
αk

( f (yk+1)− f (x∗)), which gives us
the desired inequality.
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Lemma 5.9.3. Assume that for all t ≥ 1, ηt satisfies ηt−1
αt−1
≥ ηt(1−αt)

αt
. For any δ > 0, let

E(δ) be the event that for all 1 ≤ k ≤ T

zkηk

αk
( f (yk+1)− f (x∗)) + zkDψ (x∗, xk+1)

≤z1Dψ (x∗, x1) + log
1
δ
+

k

∑
t=1

ztηt

〈
x∗ − xt, θb

t

〉
+ 2

k

∑
t=1

ztη
2
t

∥∥∥θb
t

∥∥∥2

∗

+
k

∑
t=1

((
2ztη

2
t +

3
8λ2

t
+ 24z2

t η4
t λ2

t

)
E
[
∥θu

t ∥
2
∗ | Ft−1

])
.

Then Pr [E(δ)] ≥ 1− δ.

Finally, we state a general condition for the choice of ηt and λt, which follows
exactly the same as in Proposition 5.4.5. The proof for Theorem 5.9.1 is a direct
consequence of this.

Proposition 5.9.4. We assume that the event E(δ) from Lemma 5.9.3 happens. Suppose
that for some ℓ ≤ T, there are constants C1 and C2 such that for all t ≤ ℓ

1. λtηt = C1; 2. ∑ℓ
t=1

(
1
λt

)p
≤ C2; 3.

(
1
λt

)2p
≤ C3

(
1
λt

)p
; 4. ∥∇ f (xt)∥∗ ≤

λt
2 .

Then for all t ≤ ℓ+ 1

ηt

αt
( f (yt+1)− f (x∗)) + Dψ (x∗, zt+1) ≤

1
2
(R1 + 8AC1)

2

for A ≥ max
{

log 1
δ + 26σpC2 +

2σ2pC2C3
A ; 1

}
.

Proof of Theorem 5.9.1. 1. Note that ηt ≤ 1
2cγ2Lαt

≤ 1
2Lαt

and

ηt−1

αt−1
=

t2

8cγ2L
ηt (1− αt)

αt
=

(t + 1)(t− 1)
8cγ2L

thus ηt−1
αt−1
≥ ηt(1−αt)

αt
. We have that with probability at least 1− δ, event E(δ) happens.

Conditioning on this event, in 5.4.5 We choose

C1 =
R1

24γ
; C2 =

γ

26σp ; C3 =
γ

26Tσp ; A = 3γ.

We can verify the conditions of Proposition 5.9.4 similarly as in previous section for
these choices of C1, C2, and C3.

We will show by induction that for all t ≥ 1, ∥∇ f (xt)∥∗ ≤
λt
2 and

max {∥xt − x∗∥ , ∥yt − x∗∥ , ∥zt − x∗∥} ≤ 2R1.

For t = 1, notice that x1 = y1 = z1. Thus, we have

∥∇ f (x1)∥∗ = ∥∇ f (x1)−∇ f (x∗)∥∗ ≤ LR1 ≤
λ1

2
.
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Now assume that the claim holds for 1 ≤ t ≤ k. By Proposition 5.9.4, we know that

2ηk

αk
f (yk+1)− f (x∗) + ∥zk+1 − x∗∥2 ≤ 4R2

1.

Furthermore

∥yk+1 − x∗∥ ≤ (1− αk) ∥yk − x∗∥+ αk ∥zk+1 − x∗∥ ≤ 2R1

∥xk+1 − x∗∥ ≤ (1− αk) ∥yk+1 − x∗∥+ αk ∥zk+1 − x∗∥ ≤ 2R1

For k ≥ 1 we have αk+1 = 2
k+2 < 1; αk+1

1−αk+1
= 2

k ≤
4

k+2 ≤ 2αt+1 and αt ≤ 3
2 αt+1.

Hence,

∥∇ f (xk+1)∥∗ ≤ ∥∇ f (xk+1)−∇ f (yk+1)∥∗ + ∥∇ f (yk+1)−∇ f (x∗)∥∗
≤ L ∥xk+1 − yk+1∥+

√
2L ( f (yk+1)− f (x∗))

≤ Lαk+1 ∥xk+1 − zk+1∥
1− αk+1

+ 2R1

√
Lαt

2ηt

≤ 4LR1
αk+1

1− αk+1
+ 2

√
3
2

cγR1Lαt

≤ 8γLR1αt+1 + 3

√
3
2

cγLR1αt+1

≤ (8 + 3

√
3
2

c)R1γLαt+1

=
16(8 + 3

√
3
2 c)λt+1

2c
≤ λt+1

2

as needed. Therefore, we have

ηT

αT
( f (yT+1)− f (x∗)) + Dψ (x∗, xT+1) ≤ 2R2

1

which gives

f (yT+1)− f (x∗) ≤
2R2

1αT

ηT
= 6R2

1cγ2Lα2
T

= 6 max
{

104Lγ2R2
1(T + 1)−2; 6R1 (T + 1)−1 (26T)

1
p γ

p−1
p σ

}
.

2. Following the similar steps to the proof of Theorem 5.9.1, and noticing that
(ct) is a increasing sequence, we obtain the convergence rate.
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Chapter 6

Introduction

6.1 Introduction

Adaptive optimizers like Adam (Kingma and Ba, 2014), AdaGrad (Duchi et al.,
2011), and RMSProp (Tieleman, Hinton, et al., 2012) are widely used for training
large-scale deep neural networks but require significant memory for storing momen-
tum and adaptive step size states, often doubling the model’s memory footprint. As
the size of deep neural networks continues to grow, especially with large-language
models (LLMs), reducing the memory consumption of optimizer states has become
crucial. Recent approaches, including quantization (Li et al., 2024a; Dettmers et al.,
2021; Dettmers et al., 2024), low-rank decomposition (Hu et al., 2021; Lialin et al.,
2023; Zhao et al., 2024; Shazeer and Stern, 2018), and sketching-based dimensionality
reduction (Muhamed et al., 2024; Hao et al., 2024), aim to address this issue. How-
ever, these methods often lack theoretical guarantees, compromise performance, or
require extensive tuning, especially in pretraining tasks. Our work addresses these
challenges by developing methods that attempt to reduce the theory-practice gap
and advance the cost-performance trade-off of algorithms for training DNNs.

6.1.1 The Anatomy of Common Optimizers

We provide a generic template for adaptive optimizers in Algorithm 9, which cap-
tures a broad range of first-order optimizers that leverage either momentum or adap-
tive step sizes. As detailed in Table 6.1, many standard optimizers can be repre-
sented within this framework by varying the choices of momentum and adaptive
step-size terms.

Algorithm 9 Generic Template for Stochastic Adaptive Optimizers with Momentum

Require: Initial point x1 ∈ Rd, base step size η > 0, and constant ϵ > 0.
1: for t = 1 to T do
2: Obtain stochastic gradient ∇̂ f (xt)

3: mt = update_momentum
(
∇̂ f (xt); mt−1

)
▷ Update momentum

4: v2
t = update_adaptive_stepsize

(
∇̂ f (xt); v2

t−1

)
▷ Update adaptive step size.

5: xt+1 = xt − η · mt
vt+ϵ ▷ Update step. Division is element-wise.

6: end for
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TABLE 6.1: Update rules for common optimizers in the framework of
Algorithm 9. We omit bias correction terms and numerical stabilizer
ϵ for simplicity. Memory for optimizer state is shown for model of

size d.

Optimizer Memory update_adaptive_stepsize update_momentum

Adam 2d β2v2
t−1 + (1− β2) · ∇̂ f (xt)2 β1mt−1 + (1− β1)∇̂ f (xt)

SGDm d N/A βmt−1 + (1− β)∇̂ f (xt)

AdaGrad d v2
t−1 + ∇̂ f (xt)2 ∇̂ f (xt)

AdaGrad-Norm 1 v2
t−1 +

∥∥∥∇̂ f (xt)
∥∥∥2

∇̂ f (xt)

RMSProp d
√

β1v2
t−1 + (1− β1) · ∇̂ f (xt)2 ∇̂ f (xt)

SGD 1 N/A ∇̂ f (xt)

6.2 Contributions and Overview

We aim to reduce memory consumption while maintaining strong performance and
theoretical guarantees. To this end, we introduce two memory-efficient optimiza-
tion algorithms for large-scale DNN training: Subset-Norm (SN) for adaptive step-
size memory reduction (Chapter 7) and Subspace-Momentum (SM) for momentum
compression (Chapter 8). We first present the algorithms, motivations, and theoreti-
cal analysis, then we present our extensive experimental results for both algorithms
in Chapter 9. While existing approaches trade performance for memory savings,
our theoretically-grounded methods achieve both a reduced memory footprint and
faster training:
• Subset-Norm (SN): A memory-efficient adaptive step-size algorithm with high-

probability convergence guarantees for non-convex objectives under coordinate-
wise sub-gaussian noise. By unifying AdaGrad-Coordinate’s and AdaGrad-Norm’s
analysis, we show that the SN adaptive step size (Algorithm 10) achieves im-
proved dimensional dependence, while reducing the memory footprint from O(d)
to roughly O(

√
d). On LLaMA models’ pretraining tasks, SN step sizes achieves

better perplexity than coordinate-wise step size across a range of optimizers and
model sizes, while using significantly less memory and introducing minimal ad-
ditional hyperparameters.1

• Subspace-Momentum (SM): A momentum compression method that applies mo-
mentum in a chosen subspace and SGD in the orthogonal complement with high-
probability convergence guarantees under sub-gaussian noise for non-convex smooth
objectives. When combined with SN, our method (SNSM) reduces the memory
footprint of Adam and AdaGrad+m from 2d to k +

√
d (see Table 9.2) while deliv-

ers improved training speed and performance.2

Empirical evaluations on LLaMA models from 60M to 1B parameters demonstrate
that our algorithms scale effectively and attain better performances than existing
optimizers.

1Although the subset size can be tuned (Section 9.4.1), we provide a heuristic in Section 7.5 that
works effectively across model sizes, eliminating the need for additional tuning.

2Typically, k is chosen to be around d/4.
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6.3 Related Works

As model sizes grow, memory-efficient training techniques have become crucial.
Following up on AdaFactor (Shazeer and Stern, 2018), low-rank methods like Ga-
lore (Zhao et al., 2024), LoRA (Hao et al., 2024), and ReLORA (Lialin et al., 2023)
reduce memory usage by approximating large weight matrices with low-rank rep-
resentations. Projection-based approaches, such as GRASS (Muhamed et al., 2024)
and FLORA (Hao et al., 2024), compress gradients or combine low-rank ideas with
projections to reduce memory requirements. Recently, AdaMeM (Vyas et al., 2024a)
proposes to incorporate the orthogonal subspace to the AdaFactor optimizer; this
is related to but different from our simpler SM algorithms, where we use subspace
decompositions to decouple the momentum and SGD. BAdam (Luo et al., 2024), a
block coordinate descent method that utilizes Adam as an inner solver, has been
proposed for fine-tuning large language models. Very recently, Adam-mini (Zhang
et al., 2024) also uses shared step sizes as Subset-Norm; however, the partition strat-
egy is quite different and mostly empirical. In contrast to our proposed methods,
these methods are largely heuristic-driven and often lack convergence guarantees
under standard assumptions. On the other hand, methods like SM3 (Anil et al.,
2019), which uses subset (cover) statistics to show convergence in online learning,
and MicroAdam (Modoranu et al., 2024), which provides convergence guarantees
for a gradient compression scheme with error correction, offer theoretical guaran-
tees.

Additional approaches to reducing memory during training include optimizer
quantization (Li et al., 2024a; Dettmers et al., 2021; Dettmers et al., 2024), attention
computation compression/optimization (Wu et al., 2022; Dao et al., 2022; Dao, 2023;
Shah et al., 2024), activation checkpointing (Chen et al., 2016), and distributed train-
ing (Rajbhandari et al., 2020). For inference, compression techniques are also actively
being explored (Sakr and Khailany, 2024; Dettmers et al., 2022; Xiao et al., 2024; Lin
et al., 2024; Frantar et al., 2023). These are orthogonal directions to our work and can
be combined.

Another orthogonal direction is approximated second-order optimization, where
one aims to approximate the Hessian preconditioner using only first-order informa-
tion in order to achieve faster convergence. Some works in this area include (Gupta
et al., 2018; Liu et al., 2023a; Vyas et al., 2024b). These methods typically demonstrate
faster training but at the cost of super-linear memory and additional computational
overhead.

Convergence analysis of non-convex optimization methods has seen significant
progress, with recent works providing convergence proofs for adaptive algorithms
like Adam (Li et al., 2024b; Défossez et al., 2022). Numerous studies have explored
convergence properties of various adaptive and stochastic gradient methods (Chen
et al., 2018; Défossez et al., 2022; Ene and Nguyen, 2021; Liu et al., 2023c; Liu et
al., 2023b; Ward et al., 2019; Zou et al., 2019; Reddi et al., 2018; Nesterov, 1983),
while lower bound analyses (Arjevani et al., 2023) have highlighted fundamental
limits in non-convex optimization. Here, obtaining convergence results for EMA
updates (Adam style) for subset-norm and under further relaxed assumptions like
affine smoothness (Wang et al., 2023; Attia and Koren, 2023), affine noise (Hong and
Lin, 2024; Faw et al., 2022), heavy-tailed noise (Zhang et al., 2019; Zhang et al., 2020;
Nguyen et al., 2023a; Nguyen et al., 2023b) are of great interest.
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Chapter 7

Subset-Norm

7.1 Introduction

Insights from high-probability convergence analysis of AdaGrad and AdaGrad-Norm
reveal the importance of interactions between gradient noise and the adaptive step-
size state. Specifically, parameter grouping in AdaGrad-Norm demonstrates a better
dependency on the noise parameter when the gradient noise is dense. Building on
this idea, we propose Subset-Norm, which introduces flexible parameter-grouping
schemes for adaptive learning rates. Instead of using a single scalar learning rate
for all coordinates (memory O(1)) as in AdaGrad-Norm, or separate learning rates
for each coordinate (memory O(d)) as in AdaGrad-Coordinate, Subset-Norm uses
separate adaptive learning rates for different parameters groups or subsets (memory
O(d/k) where k = #subsets). Our existing flexible analysis scheme for AdaGrad and
AdaGrad-Norm generalizes to obtain a high-probability convergence guarantee for
Subset-Norm adaptive step size for any partition. Our analysis shows that under
a vast range of coordinate noise density, simple but general partitioning schemes
(memory O(

√
d)) can yield improved dimensional dependence of the convergence rate

for Subset-Norm over AdaGrad-Norm and AdaGrad-Coordinate. This is important
as models continue to increase in size.

7.2 Subset-Norm Adaptive Step Size

Gradient State Gradient State Gradient State

Coordinate NormSubset-Norm (ours)

FIGURE 7.1: AdaGrad variants: Coordinate, Subset-Norm, and
Norm. Subset-Norm generalizes Coordinate (k = 1) and Norm

(k = d).

We compress the second moment adaptive step size by partitioning parameters
into subsets for which they share the same adaptive step size as AdaGrad-Norm
(McMahan and Streeter, 2010; Ward et al., 2019). Formally, we need to specify a par-
tition function ψ : [d] ↠ [c] that partitions the d coordinates into c non-empty subsets
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Algorithm 10 SGD with Subset-Norm Adaptive Step Size

Require: Initial point x1 ∈ Rd, base step size η > 0, function ψ : [d] → [c] that
partitions the coordinates into c subsets Ψi = ψ−1(i) ⊂ [d], where ⨿c

i=1 Ψi = [d],
and b0,i > 0 for i ∈ [c].

1: for t = 1 to T do
2: Obtain stochastic gradient ∇̂ f (xt)

3: b2
t,i = b2

t−1,i +
∥∥∥∇̂Ψi f (xt)

∥∥∥2
, for i ∈ [c] ▷ Update accumulated gradient norms

4: xt+1,k = xt,k − η
bt,ψ(k)
∇̂j f (xt), for k ∈ [d] ▷ Update coordinates

5: end for

Ψi = ψ−1(i) ⊂ [d], where ⨿c
i=1 Ψi = [d]. For example, one can pick ψ(j) = (j/c)

mod k to get consecutive equipartitioned subsets Ψi = {ik, ik + 1, . . . , ik + (k− 1)}
for some subset-size k ∈N so that kc = d.1

Given a stochastic gradient ∇̂ f (xt) ∈ Rd at time t for parameter xt, we denote
∇̂Ψi f (xt) ∈ Rk to be the subset of the coordinates of the stochastic gradient with
respect to the subset Ψi. For example, given ψ(j) = (j/c) mod k as above, we have(
∇̂Ψi f (xt)

)
j
= ∇̂ik+j−1 f (xt). Similarly, we can define ∇Ψi f (xt) ∈ R|Ψi | to be ∂ f (xt)

∂xΨi
.

We define the subset-norm adaptive step size bt,i for subset Ψi and the update rule for
xt+1:

b2
t,i = b2

t−1,i +
∥∥∥∇̂Ψi f (xt)

∥∥∥2
= b2

0 +
t

∑
j=1

∥∥∥∇̂Ψi f (xt)
∥∥∥2

, i = 0, 1, . . . , c− 1

xt+1,j = xt,j −
η

bt,ψ(j)
∇̂j f (xt), for j = 0, 1, . . . , d− 1. (7.1)

Note that choosing c = d and c = 1 recovers AdaGrad-Coordinate and AdaGrad-
Norm, respectively.

7.3 High Probability Convergence of Subset-Norm

We have the following high probability convergence result for the subset-norm adap-
tive step size:

Theorem 7.3.1. Suppose that f : Rd → R is L-smooth and lower bounded by f∗. Given un-
biased stochastic gradients ∇̂ f (xt) with stochastic gradient noise ξt := ∇̂ f (xt)−∇ f (xt)
that is σi-per-coordinate subgaussian for i ∈ [d]. For partitions of the parameters into dis-
joint subsets [d] =

⋃c−1
i=0 Ψi with Ψi ∩Ψj = ∅, for i ̸= j, the iterates xt given by Algorithm

10 satisfies the following inequality with probability at least 1−O(cδ) (for failure probabil-
ity δ > 0)

1
T

T

∑
t=1
∥∇ f (xt)∥2

2 ≤ G(δ) · Õ
(

∑c−1
i=0 ∥σΨi∥√

T
+
∥σ∥2

2 + ∑c−1
i=0 ∥σΨi∥+ Lc

T

)
, where

G(δ) := Õ

(
c−1

∑
i=0
∥σΨi∥

4 + σmax ∥σ∥2
2 + cL + c3/2σmax

)
.

1We use this strategy in all our implementations for simplicity.
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Polylog terms are hidden in Theorem 7.3.1 for simplicity. The full result, Theorem
7.6.1, and proofs are presented in Section 7.6. Theorem 7.3.1 provides guarantee
for all partitions of the parameters into arbitrary disjoint subsets and generalizes
AdaGrad-Norm (c = 1) and AdaGrad-Coordinate (c = d) results. The result is noise-
adapted: if ∑c−1

i=0 ∥σΨi∥ is small enough, the rate becomes the optimal deterministic
rate of O( 1

T ). The next section explores implications of Theorem 7.3.1.

7.4 Coordinate-Noise Density and Dimensional Dependency

Theorem 7.3.1 presents trade-offs between the number of subsets c, and stochastic
gradient noise. Intuitively, if few coordinates contribute to the total noise, the scalar
version is more useful as ∥σΨi∥

2 is small for most subsets. However, when many
coordinates contribute to the noise, ∥σΨi∥

2 can be large for many subsets and become
the dominating term.

7.4.1 Coordinate-Noise Density

To make the intuition above concrete, consider a scenario with various coordinate-
noise density rate: fix a rate β ∈ [0, 1], some dβ coordinates have noise α > 0 while
the rest are 0. The rate β controls the density of coordinate noise. When β = 0, only
1 coordinate have noise. When β = 1, all coordinates have noise. To get a feel for
β’s relationship to the fraction of coordinates containing noise, half the coordinates
contain noise when β ≈ 0.96 when d = 60M and β ≈ 0.97 when d = 10B and β ≈
0.98 when d = 1015 (see also Figure 7.3). Furthermore, α upper bounds all coordinate
noise, i.e. ∥σ∥∞ ≤ α, which is common in coordinate-wise analysis (Défossez et al.,
2022).

7.4.2 Coordinate Noise Density’s Convergence Rate’s Derivation

Given β ∈ [0, 1], we can obtain a concrete expression for the convergence rates of
various methods (different subset sizes) from Theorem 7.3.1. For SGD with Subset-
Norm, we consider an equal partition strategy, where we divide the coordinates into
c = d1−βk subsets of size dβ/k each with the dβ noisy coordinates into just k subsets
so that the rest of the c− k subsets have no noisy coordinate. We defer the derivation
details to Section 7.4.6 and summarize the results in the first row of Table 7.1.

7.4.3 Discussions

In Table 7.1, the equal subset-size partition strategy for Subset-Norm has better de-
pendency on the dimension d when the noise is not completely sparse i.e. β = 0.
Hence, if we expect the actual noise density β to be around2 0.75 to 0.90, then com-
pressing with a subset size of around d0.45 to d0.66 is optimal. The dependency on d is
important for modern neural network, since the number of parameters d is typically
much greater than the total number of iterations T.

2Figure 7.2 shows that overall noise is quite sparse but varies more when limited to a particular
layer as in Figure 7.3. See Section 9.4.1 for more details.
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TABLE 7.1: Algorithms comparison between dimensional dependen-
cies and convergence rates under different coordinate-noise density
settings. Given a density rate β, convergence rates’ dimensional de-
pendency are highlighted in red and green to denote the worst and
best dependency on the dimension. Note that memory usage of
AdaGrad-Coordinate is O(d) while SGD with Subset-Norm (with the
partition strategy presented here) is O(d/k), where k = d1.4β−0.6 is

chosen as an optimal noise dependent subset size.

Density rate AdaGrad-Coordinate AdaGrad-Norm Subset-Norm (equipartition subsets)

β ∈ [0, 1] Õ
(

d1.5+β/
√

T + d2.5/T
)

Õ
(

d2.5β/
√

T + d3β/T
) Õ

(
d0.3+1.8β/

√
T + dβ+1/T

)
if β ∈ [0, 2/3]

Õ
(

d0.3+1.8β/
√

T + d1.6β+0.6/T
)

if β ∈ [2/3, 1]
β = 0 Õ (d1.5/

√
T + d2.5/T) Õ (1/

√
T + 1/T) Õ (d0.3/

√
T + d/T)

β = 0.5 Õ (d2/
√

T + d2.5/T) Õ (d1.25/
√

T + d1.5/T) Õ (d1.2/
√

T + d1.5/T)
β = 0.9 Õ (d2.4/

√
T + d2.5/T) Õ (d2.25/

√
T + d2.7/T) Õ (d1.92/

√
T + d2.04/T)

β = 1 Õ (d2.5/
√

T + d2.5/T) Õ (d2.5/
√

T + d3/T) Õ (d2.1/
√

T + d2.2/T)
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FIGURE 7.2: Aggregated noise distribution across all parameters after
100 steps of training.

7.4.4 Coordinate-Noise Density Experiments

To validate the coordinate-noise density model, we sample stochastic gradients re-
peatedly (via different mini batches) to obtain a sample variance estimate for the true
sub-gaussian parameter σi for each coordinate: if g1, . . . , gn ∈ Rd are independent
stochastic gradient samples, we can calculate the sample variance S2 as an estima-
tor for σ2 as S2 = 1

n−1 ∑n
i=1 (gi − ḡ)2 , where ḡ = 1

n ∑n
i=1 gi is the sample mean. We

pick n = 200 samples (with batch size equals 128) for estimating coordinate-noise on
LLaMA 60M across various steps during the training process. Figure 7.2 shows the
aggregated noise distribution across all parameters for LLaMA 60M after 100 train-
ing steps. There, the noise is quite low for the vast majority of coordinates except
for some outliers. While the noise seems sparse in aggragate, a more fine-grained
analysis, presented in Figure 7.3, shows that noises are dense per parameter, except
for the Q and K attention projections in the deeper layers. Figures 7.4 to 7.9 in Sec-
tion 7.4.5 present more noise density rates across various parameters throughout
different points of the training progress.
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FIGURE 7.3: Noise density per parameter across layers for LLaMA
60M after 100 steps of training.
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FIGURE 7.4: Noise density for different parameters of LLaMA 60M at
Step 0.

7.4.5 Empirical Validation

Figure 7.4 to 7.8 show the normalized noise density ratio for different parameters
of LLaMA 60M as described in Section 7.4. The noise patterns show a clear layer-
dependent structure, where early layers (like layer 0) maintain consistently high
density (close to 1.0) throughout training, while deeper layers start very sparse and
gradually become denser as training progresses. Notably, the embedding layer shows
an opposite trend, starting relatively dense and becoming increasingly sparse by
step 5000, suggesting different dynamics for embedding updates compared to atten-
tion layers. The middle layers show an interesting transition pattern, starting sparse
but rapidly becoming dense after about 1000 steps, indicating a potential critical
phase in training where these layers become more actively involved in learning.

7.4.6 Convergence Rate Derivation

We derive the dimensional dependency of convergence rates for different AdaGrad
variants below.
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FIGURE 7.5: Noise density for different parameters of LLaMA 60M at
Step 10.
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FIGURE 7.6: Noise density for different parameters of LLaMA 60M at
Step 100.

0 1 2 3 4 5 6 7

Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

N
oi

se
D

en
si

ty
β

(N
u

m
N

on
-z

er
o
=
d
β

)

Embedding: 0.737

LM head: 0.976

Layer 4
V proj (d=2.1M): 1.000
O proj (d=2.1M): 1.000
Down proj (d=5.6M): 1.000
Gate proj (d=5.6M): 1.000
Up proj (d=5.6M): 1.000
K proj (d=2.1M): 0.999
Q proj (d=2.1M): 0.999

(Step 1000) Gradient Noise Density β (Num Non-zero= dβ) for LLaMA 60M

Q proj (d=2.1M)

K proj (d=2.1M)

V proj (d=2.1M)

O proj (d=2.1M)

Gate proj (d=5.6M)

Up proj (d=5.6M)

Down proj (d=5.6M)

Embed (d=16.4M)

LM Head (d=16.4M)

FIGURE 7.7: Noise density for different parameters of LLaMA 60M at
Step 1000.
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FIGURE 7.8: Noise density for different parameters of LLaMA 60M at
Step 5000.
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FIGURE 7.9: Noise density for different parameters of LLaMA 60M at
Step 9999.

AdaGrad-Coordinate. For c = d (AdaGrad-Coordinate), we get ∑c−1
i=0 ∥σΨi∥ =

αdβ, ∥σ∥2
2 = α2dβ, and ∑c−1

i=0 ∥σΨi∥
4 = α4dβ, so the bound from Theorem 7.3.1 be-

comes

1
T

T

∑
t=1
∥∇ f (xt)∥2

2 ≤ Õ
(

α4dβ + α3dβ + dL + d1.5α
)
· Õ
(

αdβ

√
T
+

α2dβ + αdβ + Ld
T

)
.

The dependency on d for the slow term O(1/
√

T) is d1.5dβ = d1.5+β. The dependency
on d for the fast term O(1/T) is d1.5d = d2.5. Note that there is an inherent d1.5

dependency for the slow term that does not reduce as the coordinate-noise density
decrease.

AdaGrad-Norm For c = 1 (AdaGrad-Norm), we get ∥σ∥2
2 = ∑d

i=0 ∥σi∥2 = α2dβ,
∥σ∥2 = αdβ/2, and ∥σ∥4 = α4d2β. This means that our bound from Theorem 7.3.1
becomes

1
T

T

∑
t=1
∥∇ f (xt)∥2

2 ≤ Õ
(

α4d2β + α3dβ + L + α
)
· Õ
(

αdβ/2
√

T
+

α2dβ + αdβ/2 + L
T

)
.

The dependency on d for the slow term O(1/
√

T) is d2β · dβ/2 = d2.5β. The depen-
dency on d for the fast term O(1/T) is d2β · dβ = d3β. Note that when β = 0, or
when all the noise is on a single coordinate, we recover the dimension-free results of
previous works.

AdaGrad-Subset-Norm. Now, consider the following partition strategy, where we
divide the coordinates into c = d1−βk subsets of size dβ/k each with the dβ noisy
coordinates into just k subsets so that the rest of the c− k subsets do not contain any
noisy coordinate. This is a reasonable choice due to the empirical validation from
Section 7.4.5: The noisy parameters seem to cluster in groups corresponding to the
architecture.

With this strategy, we have
∥∥∥σΨj

∥∥∥2

2
= α2dβ/k =⇒

∥∥∥σΨj

∥∥∥
2
= αdβ/2/k0.5 if j is a

noisy subset. We can compute ∑c−1
i=0 ∥σΨi∥ = αdβ/2k0.5, ∥σ∥2

2 = ∑c−1
i=0 ∥σΨi∥

2
2 = α2dβ,
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and ∑c−1
i=0 ∥σΨi∥

4 = α4d2β/k. From Theorem 7.3.1, we get a bound of

1
T

T

∑
t=1
∥∇ f (xt)∥2

2 ≤ Õ
(

α4d2β/k + α3dβ + d1−βkL +
(

d1−βk
)3/2

α

)
·

Õ
(

αdβ/2k0.5
√

T
+

α2dβ + αdβ/2k0.5 + Ld1−βk
T

)
.

Set k = d7β/5−3/5 so that
(
d1−βk

)3/2
= d2β/k = d3β/5+3/5. Then we can simplify

1
T

T

∑
t=1
∥∇ f (xt)∥2

2 ≤ Õ
(

α4d3(β+1)/5 + α3dβ + d2(β+1)/5L + d3(β+1)/5α
)
·

Õ

(
αd(12β−3)/10
√

T
+

α2dβ + αd(12β−3)/10 + Ld2(β+1)/5

T

)
.

The dependency on d for the slow term O(1/
√

T) is d3(β+1)/5 · d(12β−3)/10 = d3(1+6β)/10 =
d0.3+1.8β. The dependency on d for the fast term O(1/T) is a bit more complicated:
For β ∈ [0, 2

3 ], we have the dependency on d is d3(β+1)/5 · d2(β+1)/5 = dβ+1. For
β ∈ [ 2

3 , 1], we have the dependency on d is d3(β+1)/5 · dβ = d3(β+1)/5+β = d1.6β+0.6.
Note that this is only a possible partition strategy where the subset sizes are of equal
size (which is probably the most natural and easiest to implement). There, the opti-
mal subset size is k = d1.4β−0.6, for which if we plug in β ∈ [0, 1] we get a range from
1 to d0.8.

7.5 Implementation

We provide pseudocode for a general version of Algorithm 10 in Section 9.6.4. Dif-
ferent choices of subset sizes are explored in Section 9.4.1. Furthermore, in contrast
to methods like AdaFactor or GaLore that are limited to 2D parameters, subset-norm
is a coordinate-wise algorithm and admits an easy implementation to FSDP, where
parameters are flattened to 1D tensors for efficient communication.

Subset-size heuristics to avoid additional hyperparameters. In our experiments,
to avoid additional hyperparameters, we implement a simple partitioning scheme:
for p ∈ Rm×n, the adaptive step size state is set to max(m, n), where the subsets are
either the rows or the columns. This is a natural grouping scheme that maintains
the norm of the larger dimension and aims for the rough d0.45 subset size discussed
in Section 7.4. Another simplification is that subset-norm is applied only on lin-
ear modules, since 2D linear modules makes up the vast majority of parameters in
transformers. This means we compress all the attention, MLP, and final LM head
weights. This implementation is presented in more details in Section 9.6.3. Section
9.4.1 shows that this heuristic grouping is not optimal and can further be improved
by tuning the subset size. However, a method with minimal additional tuning is
preferred to avoid overfitting, so experiments in Section 9 use this heuristic unless
stated otherwise.
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7.6 Full Theorem and Proof

We show the full result in Theorem 7.6.1 with all the polylog terms omitted from
Theorem 7.3.1.

Theorem 7.6.1. Suppose that f : Rd → R is L-smooth and lower bounded by f∗. Given un-
biased stochastic gradients ∇̂ f (xt) with stochastic gradient noise ξt := ∇̂ f (xt)−∇ f (xt)
being σi-per-coordinate subgaussian for i ∈ [d]. For partitions of the parameters into disjoint
subsets [d] =

⋃c−1
i=0 Ψi with Ψi ∩Ψj = ∅, if i ̸= j, the iterates xt given by (7.1) satisfies the

following inequality with probability at least 1− 6cδ (for failure probability δ > 0):

1
T

T

∑
t=1
∥∇t∥2

2 ≤ G(δ) ·
(

4 ∑c−1
i=0 ∥σΨi∥√

T
+

I(δ)
T

)
, where G(δ) and I(δ) are polylog terms:

G(δ) :=
∆1

η
+ H(δ) +

(
ln T/δ ∥σ∥2

2 + cηL + 4c3/2σmax

√
log

1
δ

)
log

(
4
√

T ∑c−1
i=0 ∥σΨi∥+ I(δ)

b0,min

)

I(δ) := ∥b0∥1 +
2∆1

η
+

8 log 1
δ

b0,min
∥σ∥2

2 +

√
log

1
δ

c−1

∑
i=0
∥σΨi∥+ 8ηLc log

4ηL
b0,min

H(δ) :=
c−1

∑
i=0

(
ln (T/δ) ∥σΨi∥

2 + 2α
)(8 ∥σΨi∥

2 log 1
δ

b2
0,i

+ 2 log
(

1 + ∥σΨi∥
2 T + ∥σΨi∥

2 log
1
δ

))
.

where ∥σ∥2
2 = ∑d

i=1 σ2
i , ∥σΨi∥

2 = ∑j∈Ψi
σ2

j , σmax = maxi∈[d] σi, ∆1 = f (x1) − f∗,
b0,min = mini∈[d] b0,i > 0.

7.6.1 Proof of Theorem 7.6.1

For simplicity, in our analysis, we will use ∇̂ ft,i := ∇̂i f (xt) and ∇t,i := ∇i f (xt)
to denote the i-th coordinate of the stochastic gradients and gradients at iterate t,
respectively. The proof utilizes techniques and follows the strategies (Liu et al.,
2023c), where the main effort is to adapt the techniques for handling subsets from
the AdaGrad-Norm and AdaGrad-Coordinate proofs in (Liu et al., 2023c).

Proof. We write ∇̂ ft
bt

to denote
(
∇̂ ft
bt

)
k
= ∇̂ fk f (xt)

bt,i
for k ∈ Ψi (we will use this notation

briefly to show some steps and will not be crucial in the main analysis). We start
with the smoothness of f and ∆t := f (xt)− f∗.
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∆t+1 − ∆t (7.2)

≤ ⟨∇ f (xt), xt+1 − xt⟩+
L
2
∥xt+1 − xt∥2

= −η

〈
∇t,
∇̂ ft

bt

〉
+

η2L
2

∥∥∥∥∥ ∇̂ ft

bt

∥∥∥∥∥
2

(7.3)

= −η
c−1

∑
i=0

∑
j∈Ψi

∇t,j∇̂ ft,j

bt,i
+

η2L
2

c−1

∑
i=0

∑
j∈Ψi

∇̂ f 2
t,j

b2
t,i

= −η
c−1

∑
i=0

∑
j∈Ψi

∇t,j
(
ξt,j +∇t,j

)
bt,i

+
η2L

2

c−1

∑
i=0

∑
j∈Ψi

∇̂ f 2
t,j

b2
t,i

(ξt,i = ∇̂ ft,i −∇t,i)

= −η
c−1

∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
− η

c−1

∑
i=0

∑
j∈Ψi

∇t,jξt,j

bt,i
+

η2L
2

c−1

∑
i=0

∑
j∈Ψi

∇̂ f 2
t,j

b2
t,i

= −η
c−1

∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
− η

c−1

∑
i=0

∑
j∈Ψi

∇t,jξt,j

at,i
+ η

c−1

∑
i=0

∑
j∈Ψi

(
1

at,i
− 1

bt,i

)
∇t,jξt,j

+
η2L

2

c−1

∑
i=0

∑
j∈Ψi

∇̂ f 2
t,j

b2
t,i

. (7.4)

Now, we analyze 1
at,i
− 1

bt,i
for i = 0, 1, . . . , c− 1:∣∣∣∣ 1

at,i
− 1

bt,i

∣∣∣∣ = ∣∣∣∣bt,i − at,i

at,ibt,i

∣∣∣∣
=

∣∣∣∣∣ b2
t,i − a2

t,i

at,ibt,i (bt,i + at,i)

∣∣∣∣∣
=

∣∣∣∣∣∣∣
b2

t−1,i +
∥∥∥∇̂ fΨi f (xt)

∥∥∥2
− b2

t−1,i − ∥∇Ψi f (xt)∥2

at,ibt,i (bt,i + at,i)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∥∥∥∇̂ fΨi f (xt)

∥∥∥2
− ∥∇Ψi f (xt)∥2

at,ibt,i (bt,i + at,i)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
(∥∥∥∇̂ fΨi f (xt)

∥∥∥− ∥∇Ψi f (xt)∥
) (∥∥∥∇̂ fΨi f (xt)

∥∥∥+ ∥∇Ψi f (xt)∥
)

at,ibt,i (bt,i + at,i)

∣∣∣∣∣∣ .
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Since bt,i =

√
b2

t−1,i +
∥∥∥∇̂ fΨi f (xt)

∥∥∥2
≥
∥∥∥∇̂ fΨi f (xt)

∥∥∥ and at,i =
√

b2
t−1,i + ∥∇Ψi f (xt)∥2 ≥

∥∇Ψi f (xt)∥, we have

∣∣∣∣ 1
at,i
− 1

bt,i

∣∣∣∣ ≤
∣∣∣∣∣∣
(∥∥∥∇̂ fΨi f (xt)

∥∥∥− ∥∇Ψi f (xt)∥
) (∥∥∥∇̂ fΨi f (xt)

∥∥∥+ ∥∇Ψi f (xt)∥
)

at,ibt,i

(∥∥∥∇̂ fΨi f (xt)
∥∥∥+ ∥∇Ψi f (xt)∥

)
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∥∥∥∇̂ fΨi f (xt)

∥∥∥− ∥∇Ψi f (xt)∥
at,ibt,i

∣∣∣∣∣∣
≤

∥∥∥∇̂ fΨi f (xt)−∇Ψi f (xt)
∥∥∥

at,ibt,i

=
∥ξt,Ψi∥
at,ibt,i

.

Hence, we have ∣∣∣∣ 1
at,i
− 1

bt,i

∣∣∣∣ ≤ ∥ξt,Ψi∥
at,ibt,i

.

Then from 7.4, taking the absolute value of ∑c−1
i=0 ∑j∈Ψi

(
1

at,i
− 1

bt,i

)
∇t,jξt,j, we can

bound:

∆t+1 − ∆t

≤ −η
c−1

∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
− η

c−1

∑
i=0

∑
j∈Ψi

∇t,jξt,j

at,i
+ η

c−1

∑
i=0

∑
j∈Ψi

∣∣∣∣ 1
at,i
− 1

bt,i

∣∣∣∣ ∣∣∇t,jξt,j
∣∣+ η2L

2

c−1

∑
i=0

∑
j∈Ψi

∇̂ f 2
t,j

b2
t,i

≤ −η
c−1

∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
− η

c−1

∑
i=0

∑
j∈Ψi

∇t,jξt,j

at,i
+ η

c−1

∑
i=0

∥ξt,Ψi∥
at,ibt,i

∑
j∈Ψi

∣∣∇t,jξt,j
∣∣+ η2L

2

c−1

∑
i=0

∑
j∈Ψi

∇̂ f 2
t,j

b2
t,i

(1)
≤ −η

c−1

∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
− η

c−1

∑
i=0

∑
j∈Ψi

∇t,jξt,j

at,i
+ η

c−1

∑
i=0

∥ξt,Ψi∥
at,ibt,i

∥∇t,Ψi∥ ∥ξt,Ψi∥+
η2L

2

c−1

∑
i=0

∑
j∈Ψi

∇̂ f 2
t,j

b2
t,i

≤ −η
c−1

∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
− η

c−1

∑
i=0

∑
j∈Ψi

∇t,jξt,j

at,i

+ η
c−1

∑
i=0
∥ξt,Ψi∥

(
∥ξt,Ψi∥

2

2b2
t,i

+
∥∇t,Ψi∥

2

2a2
t,i

)
+

η2L
2

c−1

∑
i=0

∑
j∈Ψi

∇̂ f 2
t,j

b2
t,i

,

where (1) is due to ∑j∈Ψi

∣∣∇t,jξt,j
∣∣ = ⟨|∇t,Ψi | , |ξt,Ψi |⟩ ≤ ∥∇t,Ψi∥ ∥ξt,Ψi∥ and |·| denotes

coordinate-wise absolute value when we apply to vectors. The last inequality is due
to 2ab ≤ a2 + b2. Now, we can sum both sides for t = 1, . . . , T to telescope the LHS:

∆T+1 − ∆1 ≤
T

∑
t=1

(
−η

c−1

∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
− η

c−1

∑
i=0

∑
j∈Ψi

∇t,jξt,j

at,i

+ η
c−1

∑
i=0
∥ξt,Ψi∥

(
∥ξt,Ψi∥

2

2b2
t,i

+
∥∇t,Ψi∥

2

2a2
t,i

)
+

η2L
2

c−1

∑
i=0

∑
j∈Ψi

∇̂ f 2
t,j

b2
t,i

)
.

Rearranging gives
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T

∑
t=1

c−1

∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
≤ ∆1 − ∆T+1

η
−

T

∑
t=1

c−1

∑
i=0

∑
j∈Ψi

∇t,jξt,j

at,i︸ ︷︷ ︸
A

+
T

∑
t=1

c−1

∑
i=0
∥ξt,Ψi∥

(
∥ξt,Ψi∥

2

2b2
t,i

+
∥∇t,Ψi∥

2

2a2
t,i

)
︸ ︷︷ ︸

B

+
ηL
2

T

∑
t=1

c−1

∑
i=0

∑
j∈Ψi

∇̂ f 2
t,j

b2
t,i︸ ︷︷ ︸

C

.

On the LHS, we note that

T

∑
t=1

c−1

∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
=

T

∑
t=1

c−1

∑
i=0

∥∇t,Ψi∥
2

bt,i
.

We now bound each term separately. It’s easiest to bound C: ∑T
t=1 ∑c−1

i=0 ∑j∈Ψi

∇̂ f 2
t,j

b2
t,i

:

T

∑
t=1

c−1

∑
i=0

∑
j∈Ψi

∇̂ f 2
t,j

b2
t,i

=
c−1

∑
i=0

T

∑
t=1

∑
j∈Ψi

∇̂ f 2
t,j

b2
t,i

=
d

∑
i=1

T

∑
t=1

b2
t,i − b2

t−1,i

b2
t,i

≤
d

∑
i=1

2 log
bT,i

b0,i
.

=
c−1

∑
i=0

T

∑
t=1

∥∥∥∇̂ ft,Ψi

∥∥∥2

b2
t,i

=
c−1

∑
i=0

T

∑
t=1

b2
t,i − b2

t−1,i

b2
t,i

=
c−1

∑
i=0

T

∑
t=1

1−
b2

t−1,i

b2
t,i

≤
c−1

∑
i=0

T

∑
t=1

log
b2

t,i

b2
t−1,i

= 2
c−1

∑
i=0

log
T

∏
t=1

bt,i

bt−1,i

= 2
c−1

∑
i=0

log
bT,i

b0,i
.

We now have a useful inequality

T

∑
t=1

∥∥∥∇̂ ft,Ψi

∥∥∥2

b2
t,i

≤ 2 log
bT,i

b0,i
, ∀i = 0, . . . , c− 1. (7.5)

Next, we deal with −∑T
t=1 ∑c−1

i=0 ∑j∈Ψi

∇t,jξt,j
at,i

via a martingale argument. Let Ft :=
σ (ξ1, . . . , ξt−1) denote the natural filtration. Note that xt is Ft-measurable. For any
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w > 0, we have for each i ∈ [c]:

E

[
exp

(
−w ∑

j∈Ψi

∇t,jξt,j

at,i
− 2w2 ∑

j∈Ψi

σ2
j ∇2

t,j

a2
t,i

)
| Ft

]

= exp

(
−2w2 ∑

j∈Ψi

σ2
j ∇2

t,j

a2
t,i

)
E

[
exp

(
−w ∑

j∈Ψi

∇t,jξt,j

at,i

)
| Ft

]
≤ 1.

Then a simple inductive argument and using Markov’s inequality gives with prob-
ability at least 1− δ:

−w
T

∑
t=1

∑
j∈Ψi

∇t,jξt,j

at,i
≤ 2w2

T

∑
t=1

∑
j∈Ψi

σ2
j ∇2

t,j

a2
t,i

+ log
1
δ

.

By a union bound across all c subsets, we have w.p. at least 1− cδ:

−
T

∑
t=1

c−1

∑
i=0

∑
j∈Ψi

∇t,jξt,j

at,i
≤

T

∑
t=1

c−1

∑
i=0

∑
j∈Ψi

wσ2
j ∇2

t,j

a2
t,i

+
c
w

log
1
δ

. (7.6)

Let’s call the event that (7.6) happens E1. Now, consider ∑T
t=1 ∑c−1

i=0 ∑j∈Ψi

∇2
t,j

a2
t,i

. We

have

∑
j∈Ψi

∇2
t,j

a2
t,i

=
∥∇t,Ψi∥

2

a2
t,i

=
∥∇t,Ψi∥

2

b2
t−1,i + ∥∇t,Ψi∥

2

(∗)
≤

2
∥∥∥∇̂ ft,Ψi

∥∥∥2
+ 2 ∥ξt,Ψi∥

2

b2
t−1,i + 2

∥∥∥∇̂ ft,Ψi

∥∥∥2
+ 2 ∥ξt,Ψi∥

2

∥∇t,Ψi∥
2

a2
t,i

≤ 2

∥∥∥∇̂ ft,Ψi

∥∥∥2

b2
t,i

+ 2
∥ξt,Ψi∥

2

b2
t,i

.

For (∗) we use the fact that x
c+x is an increasing function and ∥∇t,Ψi∥

2 =
∥∥∥∇̂ ft,Ψi + ξt,Ψi

∥∥∥2
≤

2
∥∥∥∇̂ ft,Ψi

∥∥∥2
+ 2 ∥ξt,Ψi∥

2. Let σmax := maxi∈[d] σi, then under event E1, we have with
probability at least 1− cδ:
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−
T

∑
t=1

c−1

∑
i=0

∑
j∈Ψi

∇t,jξt,j

at,i
≤

T

∑
t=1

c−1

∑
i=0

∑
j∈Ψi

wσ2
j ∇2

t,j

a2
t,i

+
c
w

log
1
δ

≤ wσ2
max

T

∑
t=1

c−1

∑
i=0

∑
j∈Ψi

∇2
t,j

a2
t,i

+
c
w

log
1
δ

≤ wσ2
max

T

∑
t=1

c−1

∑
i=0

2

∥∥∥∇̂ ft,Ψi

∥∥∥2

b2
t,i

+ 2
∥ξt,Ψi∥

2

b2
t,i

+
c
w

log
1
δ

= σmax

√
c log

1
δ︸ ︷︷ ︸

=:α

T

∑
t=1

c−1

∑
i=0

2

∥∥∥∇̂ ft,Ψi

∥∥∥2

b2
t,i

+ 2
∥ξt,Ψi∥

2

b2
t,i

+ σmax

√
c log

1
δ

(set w :=
√

c log 1
δ

σmax
)

= 2α
T

∑
t=1

c−1

∑
i=0


∥∥∥∇̂ ft,Ψi

∥∥∥2

b2
t,i

+
∥ξt,Ψi∥

2

b2
t,i

+ α.

where the second to last equality is due to choosing w =

√
c log 1

δ
σmax

and the last equality

is letting α := σmax

√
c log 1

δ for readability.
Let MT,i = maxt≤T |ξt,i|. Using our notation, we can define MT,Ψi := maxt≤T ∥ξt,Ψi∥.

Under event E1 (and our new bound for C), we have that with probability at least
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1− cδ:

T

∑
t=1

c−1

∑
i=0

∥∇t,Ψi∥
2

bt,i
(7.7)

(C)
≤ ∆1

η
−

T

∑
t=1

c−1

∑
i=0

∑
j∈Ψi

∇t,jξt,j

at,i
+

T

∑
t=1

c−1

∑
i=0
∥ξt,Ψi∥

(
∥ξt,Ψi∥

2

2b2
t,i

+
∥∇t,Ψi∥

2

2a2
t,i

)
(7.8)

+ ηL
c−1

∑
i=0

log
bT,i

b0,i

≤ ∆1

η
−

T

∑
t=1

c−1

∑
i=0

∑
j∈Ψi

∇t,jξt,j

at,i
(7.9)

+
T

∑
t=1

c−1

∑
i=0

MT,Ψi

(
∥ξt,Ψi∥

2

2b2
t,i

+
∥∇t,Ψi∥

2

2a2
t,i

)
+ ηL

c−1

∑
i=0

log
bT,i

b0,i
(def of MT,Ψi )

(E1)

≤ ∆1

η
+ 2α

T

∑
t=1

c−1

∑
i=0


∥∥∥∇̂ ft,Ψi

∥∥∥2

b2
t,i︸ ︷︷ ︸

bound with (C)

+
∥ξt,Ψi∥

2

b2
t,i

+ α+

T

∑
t=1

c−1

∑
i=0

MT,Ψi

(
∥ξt,Ψi∥

2

2b2
t,i

+
∥∇t,Ψi∥

2

2a2
t,i

)
+ ηL

c−1

∑
i=0

log
bT,i

b0,i
(7.10)

(C)
≤ ∆1

η
+ 2α

T

∑
t=1

c−1

∑
i=0

∥ξt,Ψi∥
2

b2
t,i

+ α+

T

∑
t=1

c−1

∑
i=0

MT,Ψi

(
∥ξt,Ψi∥

2

2b2
t,i

+
∥∇t,Ψi∥

2

2a2
t,i

)
+ (ηL + 4α)

c−1

∑
i=0

log
bT,i

b0,i
(7.11)

≤ ∆1

η
+ 2α

T

∑
t=1

c−1

∑
i=0

∥ξt,Ψi∥
2

b2
t,i

+ α+ (7.12)

T

∑
t=1

c−1

∑
i=0

MT,Ψi

∥ξt,Ψi∥
2

2b2
t,i

+
T

∑
t=1

c−1

∑
i=0

MT,Ψi

∥∇t,Ψi∥
2

2a2
t,i

+ (ηL + 4α)
c−1

∑
i=0

log
bT,i

b0,i
.

(7.13)

Let us turn our attention to MT,Ψi := maxt≤T ∥ξt,Ψi∥. Note that

Pr
[

max
t∈[T]
∥ξt,Ψi∥

2 ≥ A
]
= Pr

[
exp

(
maxt∈[T] ∥ξt,Ψi∥

2

w

)
≥ exp

(
A
w

)]
(for w > 0)

≤ exp
(
−A

w

)
E

[
exp

(
maxt∈[T] ∥ξt,Ψi∥

2

w

)]
(Markov)

= exp
(
−A

w

)
E

[
max
t∈[T]

exp

(
∥ξt,Ψi∥

2

w

)]

≤ exp
(
−A

w

)
∑

t∈[T]
E

[
exp

(
∥ξt,Ψi∥

2

w

)]
.
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We have

E

[
exp

(
∥ξt,Ψi∥

2

w

)]
= E

[
exp

(
∑j∈Ψi

ξ2
t,j

w

)]

= E

[
exp

(
∑j∈Ψi

ξ2
t,j

w

)]

= E

[
∏
j∈Ψi

exp

(
ξ2

t,j

w

)]

= ∏
j∈Ψi

E

[
exp

(
ξ2

t,j

w

)]
. (independence)

Since sub-gaussianity give us

E
[
exp

(
λ2ξ2

t,i
)]
≤ exp

(
λ2σ2

i
)

, ∀ |λ| ≤ 1
σi

, ∀i ∈ [d] ,

we have E

[
exp

(
ξ2

t,j
w

)]
≤ exp

(
σ2

j
w

)
if
√

1
w ≤

1
σj

. We pick w := ∥σΨi∥
2 = ∑j∈Ψi

σ2
j ≥

σ2
j , ∀j ∈ Ψi . Hence, we have

E

[
exp

(
∥ξt,Ψi∥

2

∥σΨi∥
2

)]
≤ ∏

j∈Ψi

exp

(
σ2

j

∥σΨi∥
2

)

= exp

(
∥σΨi∥

2

∥σΨi∥
2

)
= 1. (7.14)

We have actually shown that ξt,Ψi is a ∥σΨi∥
2-subgaussian random variable in Rk (see

Proposition 2.5.2 in (Vershynin, 2018)). This fact will come in handy later. Now, we
have

Pr
[

max
t∈[T]
∥ξt,Ψi∥

2 ≥ A
]
≤ exp

(
− A

∥σΨi∥
2

)
∑

t∈[T]
E

[
exp

(
∥ξt,Ψi∥

2

∥σΨi∥
2

)]

= exp

(
− A

∥σΨi∥
2

)
T.

Setting exp
(
− A

∥σΨi∥
2

)
T = δ gives A = ∥σΨi∥

2 ln T/δ. Hence, we have with proba-

bility at least 1− δ,

MT,Ψi = max
t∈[T]
∥ξt,Ψi∥

2 ≤ ∥σΨi∥
2 ln T/δ. (7.15)

Union bounding across all i = 0, 1, . . . , c− 1, we have that with probability at least
1− cδ,

MT,Ψi ≤ ∥σΨi∥
2 ln T/δ, ∀i = 0, 1, . . . , c− 1. (7.16)
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Let us denote the event in (7.16) by E2. Combining it with event E1 and starting from
7.12, we have that with probability 1− cδ:

T

∑
t=1

c−1

∑
i=0

∥∇t,Ψi∥
2

bt,i

≤ ∆1

η
+ 2α

T

∑
t=1

c−1

∑
i=0

∥ξt,Ψi∥
2

b2
t,i

+ α +
T

∑
t=1

c−1

∑
i=0

MT,Ψi

∥ξt,Ψi∥
2

2b2
t,i

+

T

∑
t=1

c−1

∑
i=0

MT,Ψi

∥∇t,Ψi∥
2

2a2
t,i

+ (ηL + 4α)
c−1

∑
i=0

log
bT,i

b0,i

≤ ∆1

η
+ 2α

T

∑
t=1

c−1

∑
i=0

∥ξt,Ψi∥
2

b2
t,i

+ ln T/δ
T

∑
t=1

c−1

∑
i=0
∥σΨi∥

2 ∥ξt,Ψi∥
2

2b2
t,i

+ α+

ln T/δ
T

∑
t=1

c−1

∑
i=0
∥σΨi∥

2 ∥∇t,Ψi∥
2

2a2
t,i

+ (ηL + 4α)
c−1

∑
i=0

log
bT,i

b0,i

=
∆1

η
+

c−1

∑
i=0

(
ln T/δ

∥σΨi∥
2

2
+ 2α

)
T

∑
t=1

∥ξt,Ψi∥
2

b2
t,i

+ α+

ln T/δ
c−1

∑
i=0

∥σΨi∥
2

2

T

∑
t=1

∥∇t,Ψi∥
2

a2
t,i

+ (ηL + 4α)
c−1

∑
i=0

log
bT,i

b0,i
.

Recall that ∥∇t,Ψi∥
2

a2
t,i
≤ 2∥∇̂ ft,Ψi∥

2

b2
t,i

+ 2∥ξt,Ψi∥
2

b2
t,i

, we then have

ln T/δ
c−1

∑
i=0

∥σΨi∥
2

2

T

∑
t=1

∥∇t,Ψi∥
2

a2
t,i

≤ ln T/δ
c−1

∑
i=0

∥σΨi∥
2

2

T

∑
t=1

2

∥∥∥∇̂ ft,Ψi

∥∥∥2

b2
t,i

+ 2
∥ξt,Ψi∥

2

b2
t,i


= ln T/δ

c−1

∑
i=0
∥σΨi∥

2
T

∑
t=1

∥∥∥∇̂ ft,Ψi

∥∥∥2

b2
t,i

+ ln T/δ
c−1

∑
i=0
∥σΨi∥

2
T

∑
t=1

∥ξt,Ψi∥
2

b2
t,i

≤ ln T/δ
c−1

∑
i=0
∥σΨi∥

2 log
bT,i

b0,i
+ ln T/δ

c−1

∑
i=0
∥σΨi∥

2
T

∑
t=1

∥ξt,Ψi∥
2

b2
t,i

. (from 7.5)

Hence, we have with probability at least 1− 2cδ:

T

∑
t=1

c−1

∑
i=0

∥∇t,Ψi∥
2

bt,i
≤ ∆1

η
+

c−1

∑
i=0

(
ln T/δ ∥σΨi∥

2 + 2α
) T

∑
t=1

∥ξt,Ψi∥
2

b2
t,i

(7.17)

+ α +
c−1

∑
i=0

ln T/δ ∥σΨi∥
2 log

bT,i

b0,i
+

c−1

∑
i=0

(ηL + 4α) log
bT,i

b0,i

=
∆1

η
+

c−1

∑
i=0

(
ln T/δ ∥σΨi∥

2 + 2α
) T

∑
t=1

∥ξt,Ψi∥
2

b2
t,i

(7.18)

+ α +
c−1

∑
i=0

(
ln T/δ ∥σΨi∥

2 + ηL + 4α
)

log
bT,i

b0,i
. (7.19)
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Now, we bound ∑T
t=1
∥ξt,Ψi∥

2

b2
t,i

and log bT,i
b0,i

. We need to first lower bound ∑t
s=1

∥∥∥∇̂ ft,Ψi

∥∥∥2
.

We proceed by noting that

∥∇̂ ft,Ψi∥
2 = ∥∇t,Ψi + ξt,Ψi∥

2

= ∥∇t,Ψi∥2 + 2⟨ξt,Ψi ,∇t,Ψi⟩+ ∥ξt,Ψi∥2

⇒ ∥∇t,Ψi∥ − ∥∇̂ ft,Ψi∥2 + ∥ξt,Ψi∥2 = 2⟨ξt,Ψi ,∇t,Ψi⟩.

Define for t ∈ {0, 1, · · · , T} and some constant vs to be specified later:

Ut+1 = exp

(
t

∑
s=1

ws

(
∥∇s,Ψi∥ − ∥∇̂ fs,Ψi∥2 + ∥ξs,Ψi∥2

)
− vs∥∇s,Ψi∥2

)
= Ut · exp

(
wt

(
∥∇t,Ψi∥ − ∥∇̂ ft,Ψi∥

2 + ∥ξt,Ψi∥2
)
− vt∥∇t,Ψi∥2

)
= Ut · exp

(
wt (2⟨ξt,Ψi ,∇t,Ψi⟩)− vt∥∇t,Ψi∥2) .

First, note that Ut ∈ Ft. We show that Ut is a supermartingale

E [Ut+1 | Ft] = E
[
Ut · exp

(
wt (2⟨ξt,Ψi ,∇t,Ψi⟩)− vt∥∇t,Ψi∥

2) | Ft
]

= Ut exp
(
−vt∥∇t,Ψi∥2)E [exp (2wt⟨ξt,Ψi ,∇t,Ψi⟩) | Ft]

(∗)
≤ Ut exp

(
−vt∥∇t,Ψi∥

2)E
[
exp

(
4w2

t ∥σΨi∥
2 ∥∇t,Ψi∥

2
)
| Ft

]
= Ut, (vt=4w2

t ∥σΨi∥
2)

where (∗) is due to Lemma 2.2 of (Liu et al., 2023c) and the fact that ξt,Ψi is ∥σΨi∥
2-

subgaussian from (7.14). Hence, by Ville’s supermartingale inequality, we have

Pr
[

max
t∈[T+1]

Ut ≥ δ−1
]
≤ δE [U1] = δ.

This implies w.p. ≥ 1− δ, ∀0 ≤ t ≤ T:

t

∑
s=1

ws

(
∥∇s,Ψi∥ − ∥∇̂ fs,Ψi∥

2 + ∥ξs,Ψi∥
2
)
− vs∥∇s,Ψi∥

2 ≤ log
1
δ

=⇒
t

∑
s=1

(
ws − 4w2

s ∥σΨi∥
2
)
∥∇s,Ψi∥2 +

t

∑
s=1

ws∥ξs,Ψi∥2 ≤
t

∑
s=1

ws∥∇̂ fs,Ψi∥2 + log
1
δ

⇐⇒
t

∑
s=1

(
1− 4ws ∥σΨi∥

2
)
∥∇s,Ψi∥

2 +
t

∑
s=1
∥ξs,Ψi∥

2 ≤
t

∑
s=1
∥∇̂ fs,Ψi∥

2 +
1

ws
log

1
δ

.

Set ws =
1

4∥σΨi∥
2 to get

t

∑
s=1
∥ξs,Ψi∥

2 ≤
t

∑
s=1
∥∇̂ fs,Ψi∥

2 + 4 ∥σΨi∥
2 log

1
δ

, ∀t ≤ T. (7.20)
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We are now ready to bound ∑T
t=1
∥ξt,Ψi∥

2

b2
t,i

. Starting by applying (7.20), we have that

with probability at least 1− δ

T

∑
t=1

∥ξt,Ψi∥
2

b2
t,i

=
T

∑
t=1

∥ξt,Ψi∥
2

b2
0,i + ∑t

s=1

∥∥∥∇̂ ft,Ψi

∥∥∥2

≤
T

∑
t=1

∥ξt,Ψi∥
2

b2
0,i +

(
∑t

s=1 ∥ξs,Ψi∥2 − 4 ∥σΨi∥
2 log 1

δ

)+
where (x)+ = max {x, 0}. Let τ = max

(
{0} ∪

{
t ∈N≤T | ∑t

s=1 ∥ξs,Ψi∥
2 ≤ 2C

})
for

some C ≥ 0. We have

T

∑
t=1

∥ξt,Ψi∥
2

b2
t,i

=
τ

∑
t=1

∥ξt,Ψi∥
2

b2
t,i

+
T

∑
t=τ+1

∥ξt,Ψi∥
2

b2
0,i + ∑t

s=1

∥∥∥∇̂ ft,Ψi

∥∥∥2

≤ 1
b2

0,i

τ

∑
t=1
∥ξt,Ψi∥

2 +
T

∑
t=τ+1

∥ξt,Ψi∥
2

b2
0,i + ∑t

s=1 ∥ξs,Ψi∥2 − 4 ∥σΨi∥
2 log 1

δ

≤ 2C
b2

0,i
+

T

∑
t=τ+1

∥ξt,Ψi∥
2

b2
0,i + ∑t

s=1 ∥ξs,Ψi∥2 − 4 ∥σΨi∥
2 log 1

δ

.

Now, since ∑t
s=1∥ξs,Ψi∥

2

2 ≥ C for t > τ, we have b2
0,i + ∑t

s=1 ∥ξs,Ψi∥2 − 4 ∥σΨi∥
2 log 1

δ ≥
b2

0,i − 4 ∥σΨi∥
2 log 1

δ + C + 1
2 ∑t

s=1 ∥ξs,Ψi∥2. If b2
0,i − 4 ∥σΨi∥

2 log 1
δ ≥ 0, then we pick

C = 0 and b2
0,i − 4 ∥σΨi∥

2 log 1
δ + C + 1

2 ∑t
s=1 ∥ξs,Ψi∥2 ≥ 1

2 ∑t
s=1 ∥ξs,Ψi∥2. If b2

0,i −
4 ∥σΨi∥

2 log 1
δ < 0, we pick C = 4 ∥σΨi∥

2 log 1
δ − b2

0,i > 0, which gives b2
0,i− 4 ∥σΨi∥

2 log 1
δ +

C + 1
2 ∑t

s=1 ∥ξs,Ψi∥2 ≥ 1
2 ∑t

s=1 ∥ξs,Ψi∥2. In either case, we have b2
0,i − 4 ∥σΨi∥

2 log 1
δ +

C+ 1
2 ∑t

s=1 ∥ξs,Ψi∥2 ≥ 1
2 ∑t

s=1 ∥ξs,Ψi∥2. Hence, letting C = max
(

0, 4 ∥σΨi∥
2 log 1

δ − b2
0,i

)
≤

4 ∥σΨi∥
2 log 1

δ , we have with probability at least 1− δ:

T

∑
t=1

∥ξt,Ψi∥
2

b2
t,i

≤ 2C
b2

0,i
+ 2

T

∑
t=τ+1

∥ξt,Ψi∥
2

∑t
s=1 ∥ξs,Ψi∥2

≤ 2C
b2

0,i
+ 2

T

∑
t=1

∥ξt,Ψi∥
2

∑t
s=1 ∥ξs,Ψi∥2

≤
8 ∥σΨi∥

2 log 1
δ

b2
0,i

+ 2
T

∑
t=1

∥ξt,Ψi∥
2

∑t
s=1 ∥ξs,Ψi∥2

.
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Let Xt = 1 + ∑t
s=1 ∥ξs,Ψi∥

2 = Xt−1 + ∥ξt,Ψi∥
2, where X0 = 1. Then,

T

∑
t=1

∥ξt,Ψi∥
2

∑t
s=1 ∥ξs,Ψi∥2

=
T

∑
t=1

Xt − Xt−1

Xt
=

T

∑
t=1

1− Xt−1

Xt

≤
T

∑
t=1

log
(

Xt

Xt−1

)

= log

(
T

∏
t=1

Xt

Xt−1

)

= log
(

XT

X0

)
= log

(
1 +

T

∑
t=1
∥ξs,Ψi∥

2

)
.

Hence, with probability at least 1− δ:

T

∑
t=1

∥ξt,Ψi∥
2

b2
t,i

≤
8 ∥σΨi∥

2 log 1
δ

b2
0,i

+ 2 log

(
1 +

T

∑
t=1
∥ξs,Ψi∥

2

)
. (7.21)

It remains to bound ∑T
t=1 ∥ξs,Ψi∥

2. Note that

Pr

[
T

∑
t=1
∥ξs,Ψi∥

2 ≥ u

]
= Pr

[
exp

(
T

∑
t=1

∥ξs,Ψi∥2

∥σΨi∥
2

)
≥ exp

(
u

∥σΨi∥
2

)]

≤
E

[
exp

(
∑T

t=1
∥ξs,Ψi∥

2

∥σΨi∥
2

)]
exp

(
u

∥σΨi∥
2

)
≤ exp(T)

exp
(

u

∥σΨi∥
2

) (ξs,Ψi is ∥σΨi∥
2-subgaussian)

Choosing u = ∥σΨi∥
2 T + ∥σΨi∥

2 log 1
δ gives that with probability at least 1− δ, we

have
T

∑
t=1
∥ξs,Ψi∥

2 ≤ ∥σΨi∥
2 T + ∥σΨi∥

2 log
1
δ

. (7.22)

Having a high probability bound on the sum of the stochastic error of the subset-
norm, we can combine both events from (7.21) and (7.22) to get that with probability
at least 1− 2δ:

T

∑
t=1

∥ξt,Ψi∥
2

b2
t,i

≤
8 ∥σΨi∥

2 log 1
δ

b2
0,i

+ 2 log
(

1 + ∥σΨi∥
2 T + ∥σΨi∥

2 log
1
δ

)
. (7.23)
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Then we can also condition on the event that (7.23) happens and combine it with the
event in (7.19) to get that with probability at least 1− 2cδ (assuming c ≥ 2), we have

T

∑
t=1

c−1

∑
i=0

∥∇t,Ψi∥
2
2

bt,i
(7.24)

≤ ∆1

η
+

c−1

∑
i=0

(
ln T/δ ∥σΨi∥

2 + 2α
) T

∑
t=1

∥ξt,Ψi∥
2

b2
t,i

(7.25)

+ α +
c−1

∑
i=0

(
ln T/δ ∥σΨi∥

2 + ηL + 4α
)

log
bT,i

b0,i
(7.26)

≤ ∆1

η
+

c−1

∑
i=0

(
ln T/δ ∥σΨi∥

2 + 2α
)(8 ∥σΨi∥

2 log 1
δ

b2
0,i

+ 2 log
(

1 + ∥σΨi∥
2 T + ∥σΨi∥

2 log
1
δ

))
︸ ︷︷ ︸

=:H(δ)

(7.27)

+ α +
c−1

∑
i=0

(
ln T/δ ∥σΨi∥

2 + ηL + 4α
)

log
bT,i

b0,i

=
∆1

η
+ H(δ) + α +

c−1

∑
i=0

(
ln T/δ ∥σΨi∥

2 + ηL + 4α
)

log
bT,i

b0,i
. (7.28)

First, note that bT,i ≤ ∥bT∥1 = ∑c−1
i=0 bT,i. Letting b0,min := mini b0,i, we then have

c−1

∑
i=0

(
ln T/δ ∥σΨi∥

2 + ηL + 4α
)

log
bT,i

b0,i
≤ log

∥bT∥1
b0,min

c−1

∑
i=0

(
ln T/δ ∥σΨi∥

2 + ηL + 4α
)

= log
∥bT∥1
b0,min

(
ln T/δ ∥σ∥2

2 + cηL + 4cα
)

.

Now, note the LHS term ∑T
t=1 ∑c−1

i=0
∥∇t,Ψi∥

2

2
bt,i

of (7.26):

(
c−1

∑
i=0

∥∇t,Ψi∥
2
2

bt,i

)(
c−1

∑
i=0

bt,i

)
≥
(

c−1

∑
i=0
∥∇t,Ψi∥2

)2

≥
c−1

∑
i=0
∥∇t,Ψi∥

2
2 = ∥∇t∥2

2

=⇒ ∥∇t∥2
2(

∑c−1
i=0 bt,i

) ≤ c−1

∑
i=0

∥∇t,Ψi∥
2
2

bt,i
.
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Now, ∑c−1
i=0 bt,i = ∑c−1

i=0 |bt,i| = ∥bt∥1, so with probability 1− 2cδ:

T

∑
t=1

∥∇t∥2
2

∥bT∥1
≤

T

∑
t=1

∥∇t∥2
2

∥bt∥1
≤

T

∑
t=1

c−1

∑
i=0

∥∇t,Ψi∥
2
2

bt,i

=⇒
T

∑
t=1
∥∇t∥2

2 ≤ ∥bT∥1

T

∑
t=1

c−1

∑
i=0

∥∇t,Ψi∥
2
2

bt,i

≤ ∥bT∥1

(
∆1

η
+ cH(δ) +

(
ln T/δ ∥σ∥2

2 + cηL + 4cα
)

log
∥bT∥1
b0,min

)
(7.29)

≤ ∥bT∥1

(
∆1

η
+ cH(δ) +

(
ln T/δ ∥σ∥2

2 + cηL + 4cα
)

log
∥bT∥1
b0,min

)
.

(7.30)

It remains to bound ∥bT∥1. We start again from smoothness of f :

∆t+1 − ∆t ≤ ⟨∇t, xt+1 − xt⟩+
L
2
∥xt+1 − xt∥2

= −η

〈
∇t,
∇̂ ft

bt

〉
+

η2L
2

∥∥∥∥∥ ∇̂ ft

bt

∥∥∥∥∥
2

= −η

〈
∇̂ ft − ξt,

∇̂ ft

bt

〉
+

η2L
2

c−1

∑
i=0

∑
j∈Ψi

∇̂ f 2
t,Ψj

b2
t,i

= −η

〈
∇̂ ft,

∇̂ ft

bt

〉
+ η

〈
ξt,
∇̂ ft

bt

〉
+

η2L
2

c−1

∑
i=0

∥∥∥∇̂ ft,Ψi

∥∥∥2

b2
t,i

= −η
c−1

∑
i=0

∑
j∈Ψi

∇̂ f 2
t,j

bt,i
+ η

c−1

∑
i=0

∑
j∈Ψi

ξt,j∇̂ ft,j

bt,i
+

η2L
2

c−1

∑
i=0

∥∥∥∇̂ ft,Ψi

∥∥∥2

b2
t,i

= −η
c−1

∑
i=0

∥∥∥∇̂ ft,Ψi

∥∥∥2

bt,i
+

η2L
2

c−1

∑
i=0

∥∥∥∇̂ ft,Ψi

∥∥∥2

b2
t,i

+ η
c−1

∑
i=0

∑
j∈Ψi

ξt,j∇̂ ft,j

bt,i
. (7.31)

Note that

c−1

∑
i=0

∑
j∈Ψi

ξt,j∇̂ ft,j

bt,i
≤ 1

2

c−1

∑
i=0

∑
j∈Ψi

ξ2
t,j

bt,i
+

1
2

c−1

∑
i=0

∑
j∈Ψi

∇̂ f 2
t,j

bt,i

=
1
2

c−1

∑
i=0

∑
j∈Ψi

ξ2
t,j

bt,i
+

1
2

c−1

∑
i=0

∥∥∥∇̂ ft,Ψi

∥∥∥2

bt,i
.

Plugging back in, we have

∆t+1 − ∆t ≤ −
η

2

c−1

∑
i=0

∥∥∥∇̂ ft,Ψi

∥∥∥2

bt,i
+ η2L

c−1

∑
i=0

∥∥∥∇̂ ft,Ψi

∥∥∥2

b2
t,i

+
η

2

c−1

∑
i=0

∥ξt,Ψi∥
2

bt,i
.
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Summing over T and rearranging, we get

T

∑
t=1

c−1

∑
i=0

∥∥∥∇̂ ft,Ψi

∥∥∥2

bt,i
≤ 2∆1

η
+

T

∑
t=1

c−1

∑
i=0

∥ξt,Ψi∥
2

bt,i
+ 2ηL

T

∑
t=1

c−1

∑
i=0

∥∥∥∇̂ ft,Ψi

∥∥∥2

b2
t,i

=⇒
T

∑
t=1

c−1

∑
i=0

∥∥∥∇̂ ft,Ψi

∥∥∥2

bt,i
≤ 4∆1

η
+ 2

T

∑
t=1

c−1

∑
i=0

∥ξt,Ψi∥
2

bt,i
+

T

∑
t=1

c−1

∑
i=0

(
4ηL
b2

t,i
− 1

bt,i

)∥∥∥∇̂ ft,Ψi

∥∥∥2
.

We can bound ∑T
t=1 ∑c−1

i=0

(
4ηL
b2

t,i
− 1

bt,i

)∥∥∥∇̂ ft,Ψi

∥∥∥2
as follows. Consider i ∈ [c]. Let

τi = max {t ≤ T | bt,i ≤ 4ηL} so that t ≥ τi implies bt,i > 4ηL ⇐⇒ 4ηL
b2

t,i
< 1

bt,i
:

T

∑
t=1

(
4ηL
b2

t,i
− 1

bt,i

)∥∥∥∇̂ ft,Ψi

∥∥∥2
=

τi

∑
t=1

(
4ηL
b2

t,i
− 1

bt,i

)∥∥∥∇̂ ft,Ψi

∥∥∥2
+

T

∑
t=τi+1

4ηL
b2

t,i
− 1

bt,i︸ ︷︷ ︸
<0

∥∥∥∇̂ ft,Ψi

∥∥∥2

≤
τi

∑
t=1

(
4ηL
b2

t,i
− 1

bt,i

)∥∥∥∇̂ ft,Ψi

∥∥∥2

≤ 4ηL
τi

∑
t=1

∥∥∥∇̂ ft,Ψi

∥∥∥2

b2
t,i

≤ 8ηL log
bτi ,i

b0,i
≤ 8ηL log

4ηL
b0,i

.

Hence, we have

T

∑
t=1

c−1

∑
i=0

∥∥∥∇̂ ft,Ψi

∥∥∥2

bt,i
≤ 4∆1

η
+ 2

T

∑
t=1

c−1

∑
i=0

∥ξt,Ψi∥
2

bt,i
+ 8ηL

c−1

∑
i=0

log
4ηL
b0,i

.

Consider the LHS

T

∑
t=1

c−1

∑
i=0

∥∥∥∇̂ ft,Ψi

∥∥∥2

bt,i
=

T

∑
t=1

c−1

∑
i=0

b2
t,i − b2

t−1,i

bt,i
=

T

∑
t=1

c−1

∑
i=0

bt,i −
b2

t−1,i

bt,i

≥
T

∑
t=1

c−1

∑
i=0

bt,i −
b2

t−1,i

bt−1,i
=

T

∑
t=1

c−1

∑
i=0

bt,i − bt−1,i

=
c−1

∑
i=0

T

∑
t=1

bt,i − bt−1,i =
c−1

∑
i=0

bT,i − b0,i

= ∥bT∥1 − ∥b0∥1 .

Hence, we have

∥bT∥1 ≤ ∥b0∥1 +
2∆1

η
+

c−1

∑
i=0

T

∑
t=1

∥ξt,Ψi∥
2

bt,i
+ 8ηLc log

4ηL
b0,min

.
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It remains to bound ∑T
t=1
∥ξt,Ψi∥

2

bt,i
for each i ∈ [c]. Recall from (7.23), with probability

at least 1− δ

t

∑
s=1
∥ξt,Ψi∥2 ≤

t

∑
s=1
∥∇̂ ft,Ψi∥2 + 4 ∥σΨi∥

2 log
1
δ

, ∀t ≤ T.

We have with probability at least 1− 2cδ,

T

∑
t=1

∥ξt,Ψi∥
2

bt,i
=

T

∑
t=1

∥ξt,Ψi∥
2√

b2
0,i + ∑t

s=1 ∥∇̂ fs,Ψi∥2

(1)
≤

T

∑
t=1

ξ2
t,i√

b2
0,i +

(
∑t

s=1 ∥ξs,Ψi∥2 − 4 ∥σΨi∥
2 log 1

δ

)+
≤

8 ∥σΨi∥
2 log 1

δ

b0,i
+ 2
√

2

√√√√ T

∑
s=1
∥ξs,Ψi∥2

(2)
≤

8 ∥σΨi∥
2 log 1

δ

b0,i
+ 4

√
∥σΨi∥

2 T + ∥σΨi∥
2 log

1
δ

,

where (1) is due to (7.20) and (2) is due to Lemma (7.22). Hence, we have that with
probability at least 1− 2cδ,

∥bT∥1 ≤ ∥b0∥1 +
2∆1

η
+

c−1

∑
i=0

8 ∥σΨi∥
2 log 1

δ

b0,i
+

c−1

∑
i=0

4

√
∥σΨi∥

2 T + ∥σΨi∥
2 log

1
δ
+ 8ηLc log

4ηL
b0,min

≤ ∥b0∥1 +
2∆1

η
+

8 log 1
δ

b0,min

c−1

∑
i=0
∥σΨi∥

2 + 4
√

T
c−1

∑
i=0
∥σΨi∥+

√
log

1
δ

c−1

∑
i=0
∥σΨi∥+ 8ηLc log

4ηL
b0,min

= 4
√

T
c−1

∑
i=0
∥σΨi∥+ ∥b0∥1 +

2∆1

η
+

8 log 1
δ

b0,min
∥σ∥2

2 +

√
log

1
δ

c−1

∑
i=0
∥σΨi∥+ 8ηLc log

4ηL
b0,min︸ ︷︷ ︸

=:I(δ)

.

Hence, we can combine (7.30) with the bound for ∥bT∥1 to get that with probability
1− 6cδ:

T

∑
t=1
∥∇t∥2

2

≤ ∥bT∥1

(
∆1

η
+ H(δ) +

(
ln T/δ ∥σ∥2

2 + cηL + 4cσmax

√
c log

1
δ

)
log
∥bT∥1
b0,min

)

≤
(

4
√

T
c−1

∑
i=0
∥σΨi∥+ I(δ)

)
·(

∆1

η
+ H(δ) +

(
ln T/δ ∥σ∥2

2 + cηL + 4c3/2σmax

√
log

1
δ

)
log

(
4
√

T ∑c−1
i=0 ∥σΨi∥+ I(δ)

b0,min

))
.
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Dividing both sides by T, we get the theorem that with probability 1− 6cδ:

1
T

T

∑
t=1
∥∇t∥2

2 ≤ G(δ) ·
(

4 ∑c−1
i=0 ∥σΨi∥√

T
+

I(δ)
T

)
, where G(δ) and I(δ) are polylog terms:

G(δ) :=
∆1

η
+ H(δ) +

(
ln T/δ ∥σ∥2

2 + cηL + 4c3/2σmax

√
log

1
δ

)
log

(
4
√

T ∑c−1
i=0 ∥σΨi∥+ I(δ)

b0,min

)

I(δ) := ∥b0∥1 +
2∆1

η
+

8 log 1
δ

b0,min
∥σ∥2

2 +

√
log

1
δ

c−1

∑
i=0
∥σΨi∥+ 8ηLc log

4ηL
b0,min

H(δ) :=
c−1

∑
i=0

(
ln (T/δ) ∥σΨi∥

2 + 2α
)(8 ∥σΨi∥

2 log 1
δ

b2
0,i

+ 2 log
(

1 + ∥σΨi∥
2 T + ∥σΨi∥

2 log
1
δ

))
.

We are done.
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Chapter 8

Subspace-Momentum

8.1 Introduction

Low rank methods like LoRA (Hu et al., 2021), and more recently, GaLore (Zhao
et al., 2024) are popular methods for reducing memory during training. However,
these methods often lack theoretical guarantees unless stronger conditions are as-
sumed. We propose Subspace-Momentum (SM) that ensures convergence under
standard assumptions by incorporating the orthogonal complement of the stochastic gra-
dient to the optimization (Figure 8.1), where the convergence analysis can be decou-
pled between the two orthogonal subspaces: one for SGD and another for SGD with
momentum. For rank r, Subspace-Momentum uses only O(r) memory for the opti-
mization state due to only maintaining momentum state in the low rank space and
the use of SGD in the orthogonal subspace.

8.2 Subspace-Momentum

Existing algorithmic compression approaches like GaLore (Zhao et al., 2024), GRASS
(Muhamed et al., 2024), and FLORA (Hao et al., 2024) project the gradient to a lower
dimensional space Rk for updating the optimizer state via some linear operator P :
Rd → Rk such that P∗P : Rd → Rd is a projection, where P∗ : Rk → Rd is the adjoint
operator of P. More concretely, given a stochastic gradient ∇̂ f (xt) ∈ Rd at time t, a
low-dimensional version ct := P∇̂ f (xt) ∈ Rk is computed that is used to update the
states before projecting back to Rd for update:

mt = β1mt−1 + (1− β1) ct; v2
t = β2v2

t−1 + (1− β2) c2
t ; xt+1 = xt − P∗ (mt/vt) . (8.1)

This update essentially performs adaptive optimization in the row span U ⊆ Rd of
P when viewed as a linear operator, with dim(U) = k. For example, GaLore (Zhao
et al., 2024) utilizes the top k singular vectors of snapshots of stochastic gradients,
and FLORA (Hao et al., 2024) simply projects to a random subspace using dense
Gaussian matrices. Due to the optimization happening only in a low rank subspace,
convergence is not guaranteed unless stronger conditions are assumed.

Subspace momentum guarantees convergence by incorporating the orthogonal
complement of P∗P∇̂ f (xt) ∈ U that lives in the orthogonal complement U⊥ of U
(with U ⊕U⊥ = Rd), of which we can compute via

(
∇̂ f (xt)− P∗P∇̂ f (xt)

)
∈ U⊥.

This gives rise to Subspace Momentum (SM) presented in Algorithm 11.
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FIGURE 8.1: Subspace Momentum.

Algorithm 11 SGD with Subspace Momentum (SM).

Require: Projection P : Rd → Rk and its adjoint P∗

1: for t = 1, 2, . . . , T do
2: Obtain stochastic gradient ∇̂ f (xt)

3: mt = β1mt−1 + (1− β1)P∇̂ f (xt) ▷ Momentum in subspace
4: rt = ∇̂ f (xt)− P∗P∇̂ f (xt) ▷ Orthogonal complement
5: xt+1 = xt − η(P∗mt + rt) ▷ Step in both spaces
6: end for

8.3 High-probability Convergence of Subspace-Momentum

We show that Subspace-Momentum, Algorithm 11, converges with high-probability
under the standard assumption of smoothness and σ-subgaussian stochastic gradi-
ent noise in Theorem 8.3.1.

Theorem 8.3.1. Suppose that f : Rd → R is L-smooth and lower bounded by f∗. Assume
unbiased stochastic gradients ∇̂ f (xt) with σ-subgaussian stochastic gradient noise. Then,
the iterates xt given by SGD with Subspace-Momentum (Algorithm 11) with step size η :=

1
α
√

T
for α := (3−β)L

2(1−β)
satisfies the following with probability at least 1− δ

T
T

∑
i=1
∥∇t∥2 ≤ 8∆1α

T
+

7σ
√

α∆1√
T

+
48σ2 log (1/δ)

T
,

where ∆1 := f (x1)− f∗ is the initial function gap.

We observe that Theorem 8.3.1 has a similar convergence rate to vanilla SGD.
The proof is presented in Section 8.5.2, where we provide some intuition for the
algorithm and the proof.

8.4 Implementation: SN+SM and Choice of Projection

The projection P in Algorithm 11 can be a dense random projection as in FLORA,
projection to top k singular vectors as in GaLore, or projection to random standard
bases (sampling coordinates) as in GRASS. Note that Subspace Momentum main-
tains the same memory footprint, O(k), as existing low-rank optimizers. However,
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the update step of SM is full rank: it performs momentum only in U := rowspan(P)
while performs SGD in U⊥. Unlike joint compression techniques such as GaLore
(8.1), SM only affects the momentum term, so it is modular and hence fits into the
framework of Algorithm 9 for which we can combine it with different adaptive step
sizes such as subset-norm.1

8.4.1 Projection Selection

Using a subspace from SVD can be expensive for larger models and consumes ad-
ditional memory to store the projection. Gradient-independent projections like ran-
dom gaussian as in FLORA (Hao et al., 2024) avoids the expensive SVD computation
and can save memory by storing the pseudorandom seed (at the cost of recompu-
tating the projection at every step). One can further speed up the random projec-
tion by using a faster (sparse) random projection like the Subsampled-Randomized
Hadamard Transform (SRHT) used in the Fast-JL transform (Ailon and Chazelle,
2009). Random projections like SRHT can also be used to approximate SVD (Appx-
SVD) computation (Halko et al., 2011) that can be much faster than full SVD. Finally,
the cheapest projection is just selecting a subspace of random standard bases. Re-
cently, GRASS (Muhamed et al., 2024) explores this idea and tested sampling ran-
dom rows and columns with large norms. We examine different choices for the sub-
space projection and compare their time, space, and performance tradeoffs in Table
9.4.

Note that the choice of the projection is important as some projections are more
computationally and memory expensive than other, although trading other quali-
ties for given the cost. Simple projections like selecting a subset of coordinates for
momentum (Subset-Momentum) are not only faster but enables simple distributed
training like FSDP unlike more complex subspace selection mechanism that requires
additional priors about the parameters (shape, low-rank, etc.) that might not always
satisfied.

8.4.2 Subspace Switching and Projection Updates

Algorithm 11 and the accompanying theory in Section 8.3 are only for a fixed projec-
tion. However, from our experiments, we find that performing subspace switching
every G steps (as in GaLore) to be beneficial, especially for smaller ranks. Section
9.4.2 contains more details on ranks and updating projections. We incorporate pro-
jection updates in our main algorithms by picking a projection update gap and then
fully resetting the momentum term to zero when we switch (in contrast to GaLore’s
accumulated statistics when switching subspace).

8.5 Subspace-Momentum Convergence Proofs

In this section, we provide a high-probability convergence proof for SGD with Subspace-
Momentum for non-convex smooth objective under sub-gaussian gradient noise.

1Section 9.4.3 shows the different combinations of momentum and step sizes.



Chapter 8. Subspace-Momentum 129

8.5.1 Setup and Intuition

Notations. Given a linear operator P : Rd → Rk, we have P∗ : Rk → Rd is P’s
adjoint2, and we consider P∗P : Rd → Rd is a projection operator i.e. P∗P is a
bounded linear operator such that (P∗P)2 = P∗P. Given a space V ⊆ Rd, we denote
its orthogonal subspace by V⊥ :=

{
v ∈ Rd : ⟨v, u⟩ = 0, ∀u ∈ V

}
.

Let U = row (P) ⊆ Rd be the row span of P. Let Ψ : Rd → U be Ψ(x) = P∗Px
and Ψ⊥ : Rd → U⊥ be Ψ⊥(x) = x − P∗Px. Then for any vector x in Rd, have the
orthogonal decomposition

x = Ψ(x) + Ψ⊥(x).

SGD with Subspace Momentum. Let gt := ∇̂ f f (xt) denotes the stochastic gradi-
ent at time t. Let ĉt = Pgt, gU

t = Ψgt = P∗Pgt ∈ U, and g⊥t = gt − gU
t ∈ U⊥. Let

∇t := ∇ f (xt) be a short hand for the gradient at time t and let ∇U
t := Ψ (∇ f (xt)) ∈

U and ∇⊥t := Ψ⊥ (∇ f (xt)) ∈ U⊥ be the orthogonal decomposition of ∇ f (xt) with
respect to U and U⊥, so that ∇t = ∇U

t +∇⊥t . Note that the superscript of a variable
tries to suggest the space that it lives in (either U or U⊥). We have the following
update rule for subspace momentum:

m̂t = βm̂t−1 + (1− β)Pgt

g⊥t = gt − P∗Pgt

mt = P∗m̂t

xt+1 = xt − η
(

mt + g⊥t
)

.

Note that

mt = βP∗m̂t−1 + (1− β)P∗Pgt

= βmt−1 + (1− β)gU
t .

Expanding the terms, we see that this is just momentum in U

mt = βP∗m̂t−1 + (1− β)P∗Pgt

= βP∗m̂t−1 + (1− β)gU
t

= β2P∗m̂t−2 + (1− β)βgU
t−1 + (1− β)gU

t

= (1− β)
t

∑
i=0

βigU
t−i. (8.2)

Hence, we can think of the update of SGD-SM as performing two separate algo-
rithms in the orthogonal subspaces: momentum in the subspace U and SGD in the
subspace U⊥ (see also Figure 8.1) i.e. if we decompose xt into its orthogonal compo-
nents xt = xU

t + x⊥t , then

xU
t+1 = xU

t − ηmt

= xU
t − η(1− β)

t

∑
i=0

βigU
t−i

x⊥t+1 = x⊥t − ηg⊥t .

2In Rd, the adjoint P∗ of a linear operator P is the linear operator given by the transpose of the matrix
representation of P. We can also generalize Subspace-Momentum to general Hilbert spaces.
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For our analysis, let ξt := gt −∇t denote the stochastic gradient error at time t. We
can further decompose the error into its subspace components:

ξt = ξU
t + ξ⊥t

=
(

gU
t −∇U

t

)
+
(

g⊥t −∇⊥t
)

.

Basic facts. We establish some facts for subspace momentum.

1. Pythagorean: ∥gt∥2 =
∥∥gU

t
∥∥2

+
∥∥g⊥t

∥∥2 and ∥∇t∥2 =
∥∥∇U

t
∥∥2

+
∥∥∇⊥t ∥∥2 and so

on for these decompositions.

2. Subspace smoothness: If f is smooth ∥∇ f (x)−∇ f (y)∥ ≤ L ∥x− y∥, then due
to contraction property of the projection operator, we have that the projected
gradients of f are also L-Lipschitz:

∥P∗P∇ f (x)− P∗P∇ f (y)∥2 = ∥∇ f (x)−∇ f (y)∥ (8.3)
≤ L ∥x− y∥ .

3. Subspace non-bias:

E
[

gU
t −∇U

t

]
= E

[
ξU

t

]
= E [P∗P (gt −∇t)]

= 0,

and similarly for the orthogonal subspace

E
[

g⊥t −∇⊥t
]
= E

[
ξ⊥t

]
= E

[
ξt − ξU

t

]
= 0.

4. Subspace bounded variance: if the stochastic gradient’s variance is bounded,
then its subspace components are also bounded E

[
∥ξt∥2

]
:

E

[∥∥∥gU
t −∇U

t

∥∥∥2
]
= E

[∥∥∥ξU
t

∥∥∥2
]

= E

[
∥ξt∥2 −

∥∥∥ξ⊥t

∥∥∥2
]

≤ σ2 −E

[∥∥∥ξ⊥t

∥∥∥2
]

,

and similarly,

E

[∥∥∥ξ⊥t

∥∥∥2
]
≤ σ2 −E

[∥∥∥ξU
t

∥∥∥2
]

.

8.5.2 Subspace-Momentum convergence proof

Suppose that f : Rd → R is L-smooth and stochastic gradients ∇̂ f f (xt) = gt is unbi-
ased, i.e. E [gt] = ∇ f (xt), and has σ-sub-gaussian noise, i.e. E[exp(λ2 ∥gt −∇ f (xt)∥2)] ≤
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exp(λ2σ2) for all λ s.t. |λ| ≤ 1/σ. First, we will show an error bound that is a starting
point for the high-probability convergence results.

Lemma 8.5.1. If f is L-smooth, then SGD with Subspace-Momentum (Algorithm 11) yields

f (xT+1)− f (x1) ≤ −η
T

∑
t=1
∥∇t∥2 − η

T

∑
t=1
⟨∇t, ξt⟩+

(3− β)Lη2

2 (1− β)

T

∑
t=1
∥gt∥2 .

Remark 8. Lemma 8.5.1 shows that the optimization error of SGD-SM is quite similar to
SGD-M.

Proof. Note that mt ∈ U and rt ∈ U⊥. Starting with smoothness, we have

f (xt+1) ≤ f (xt) + ⟨∇ f (xt), xt+1 − xt⟩+
L
2
∥xt+1 − xt∥2

= f (xt)− η
〈
∇ f (xt), mt + g⊥t

〉
+

η2L
2

∥∥∥mt + g⊥t
∥∥∥2

= f (xt)− η ⟨∇ f (xt), mt⟩ − η
〈
∇ f (xt), g⊥t

〉
+

η2L
2

∥∥∥mt + g⊥t
∥∥∥2

.

We have

f (xt+1)− f (xt) ≤ −η
〈
∇U

t , mt

〉
− η

〈
∇⊥t , g⊥t

〉
+

η2L
2

∥∥∥mt + g⊥t
∥∥∥2

= −η
〈
∇U

t , mt

〉
− η

〈
∇⊥t , g⊥t

〉
+

η2L
2
∥mt∥2 +

η2L
2

∥∥∥g⊥t
∥∥∥2

.

(Pythagorean)

Summing it up, we get

f (xT+1)− f (x1) ≤ −η
T

∑
t=1

〈
∇U

t , mt

〉
+

η2L
2

T

∑
t=1
∥mt∥2

︸ ︷︷ ︸
SGD with momentum error in U

−η
T

∑
t=1

〈
∇⊥t , g⊥t

〉
+

η2L
2

T

∑
t=1

∥∥∥g⊥t
∥∥∥2

︸ ︷︷ ︸
vanilla SGD error in U⊥

.

(8.4)
We analyze −η

〈
∇U

t , mt
〉
+ η2L

2 ∥mt∥2 and −η
〈
∇⊥t , g⊥t

〉
+ η2L

2

∥∥g⊥t
∥∥2 separately. In-

tuitively, the error within each subspace is controlled by their respective algorithm.
Investigating the momentum term, we have

−
〈
∇U

t , mt

〉
= −

〈
∇U

t , βmt−1 + (1− β)gU
t

〉
= −β

〈
∇U

t , mt−1

〉
− (1− β)

〈
∇U

t , gU
t

〉
= −β

〈
∇U

t −∇U
t−1, mt−1

〉
− β

〈
∇U

t−1, mt−1

〉
− (1− β)

〈
∇U

t , gU
t

〉
.
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We examine −
〈
∇U

t −∇U
t−1, mt−1

〉
:

−
〈
∇U

t −∇U
t−1, mt−1

〉
= − ⟨∇t −∇t−1, mt−1⟩+

〈
∇⊥t −∇⊥t−1, mt−1

〉
= − ⟨∇t −∇t−1, mt−1⟩
≤ ∥∇t −∇t−1∥ ∥mt−1∥
≤ L ∥xt − xt−1∥ ∥mt−1∥

= ηL
∥∥∥mt−1 + g⊥t−1

∥∥∥ ∥mt−1∥

≤ ηL
∥∥∥mt−1 + g⊥t−1

∥∥∥2
.

Now we have

−
〈
∇U

t , mt

〉
≤ ηLβ

∥∥∥mt−1 + g⊥t−1

∥∥∥2
− β

〈
∇U

t−1, mt−1

〉
− (1− β)

〈
∇U

t , gU
t

〉
≤ ηL

t−1

∑
i=1

βt−i
∥∥∥mi + g⊥i

∥∥∥2
− (1− β)

t

∑
i=1

βt−i
〈
∇U

i , gU
i

〉
.

Summing over t, we have

−η
T

∑
t=1

〈
∇U

t , mt

〉
≤ η2L

T

∑
t=1

t−1

∑
i=1

βt−i
∥∥∥mi + g⊥i

∥∥∥2
− (1− β)η

T

∑
t=1

t

∑
i=1

βt−i
〈
∇U

i , gU
i

〉
= Lη2

T

∑
i=1

T

∑
t=i

βt−i
∥∥∥mi + g⊥i

∥∥∥2
− (1− β)η

T

∑
i=1

T

∑
t=i

βt−i
〈
∇U

i , gU
i

〉
(swap the sum)

≤ Lη2
T

∑
i=1

∥∥∥mi + g⊥i
∥∥∥2 T

∑
t=i

βt − (1− β)η
T

∑
i=1

〈
∇U

i , gU
i

〉 T

∑
t=i

βt

≤ Lη2

1− β

T

∑
i=1

∥∥∥mi + g⊥i
∥∥∥2
− η

T

∑
i=1

〈
∇U

i , gU
i

〉
=

Lη2

1− β

T

∑
i=1

(
∥mi∥2 +

∥∥∥g⊥i
∥∥∥2
)
− η

T

∑
i=1

〈
∇U

i , ξU
i

〉
− η

T

∑
i=1

∥∥∥∇U
i

∥∥∥2
.

Now, we look at ∑T
i=1 ∥mi∥2:

T

∑
t=1
∥mt∥2 =

T

∑
t=1

∥∥∥βmt−1 + (1− β)gU
t

∥∥∥2

≤
T

∑
t=1

β ∥mt−1∥2 + (1− β)
∥∥∥gU

t

∥∥∥2
(convexity of ∥·∥2)

≤
T

∑
t=1

β ∥mt∥2 + (1− β)
T

∑
t=1

∥∥∥gU
t

∥∥∥2

=⇒
T

∑
t=1
∥mt∥2 ≤

T

∑
t=1

∥∥∥gU
t

∥∥∥2
.



Chapter 8. Subspace-Momentum 133

Examining the momentum error terms, we get

− η
T

∑
t=1

〈
∇U

t , mt

〉
+

η2L
2

T

∑
t=1
∥mt∥2

≤
(

Lη2

1− β
+

η2L
2

) T

∑
i=1
∥mi∥2 +

Lη2

1− β

T

∑
i=1

∥∥∥g⊥i
∥∥∥2
− η

T

∑
i=1

〈
∇U

i , ξU
i

〉
− η

T

∑
i=1

∥∥∥∇U
i

∥∥∥2

≤
(
(3− β)Lη2

2 (1− β)

) T

∑
i=1

∥∥∥gU
i

∥∥∥2
+

Lη2

1− β

T

∑
i=1

∥∥∥g⊥i
∥∥∥2
− η

T

∑
i=1

〈
∇U

i , ξU
i

〉
− η

T

∑
i=1

∥∥∥∇U
i
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(8.5)

We consider the SGD error terms in the orthogonal subspace:

−η
〈
∇⊥t , g⊥t

〉
+

η2L
2

∥∥∥g⊥t
∥∥∥2

= −η
〈
∇⊥t ,∇⊥t − g⊥t

〉
− η

∥∥∥∇⊥t ∥∥∥2
+

η2L
2

∥∥∥g⊥t
∥∥∥2

= −η
〈
∇⊥t , ξ⊥t

〉
− η

∥∥∥∇⊥t ∥∥∥2
+

η2L
2

∥∥∥g⊥t
∥∥∥2

. (8.6)

Now we are ready to combine (8.5) and (8.6). First note the common terms
∥∥g⊥i

∥∥2 in
both equations combine to a sum similarly to

∥∥gU
t
∥∥2:
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Combining both terms, we see that the terms are combined from both subspaces (red
from (8.5) and blue from (8.6)):
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Plugging everything back into (8.4), we have

f (xT+1)− f (x1) ≤ −η
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8.5.3 Proof of Theorem 8.3.1.

Proof of Theorem 8.3.1. Starting from Lemma 8.5.1 and letting α = (3−β)L
2(1−β)

and ∆1 :=
f (x1)− f∗ for simplicity, we have
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Rearranging and defining some weight w > 0, we have
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LetFt := σ (ξ1, . . . , ξt−1) denote the natural filtration. Now, since E
[
∑T

t=1 ⟨∇t, ξt⟩
]
=

0 and ξt is σ-sub-gaussian, we have that∇t ∈ Ft and so if 0 ≤ wαη2 ≤ 1
4σ2 , Corollary

4.3.3 implies
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Then Lemma 4.3.4 implies that with probability at least 1− δ, we have
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Then with probability at least 1− δ, we have
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Combining the ∥∇t∥2 terms, we get
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(8.8)
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Setting w = 1
12σ2η

, then
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if 1− αη ≥ 1/2. Furthermore, we have that wαη2 = αη
12σ2 ≤ 1

4σ2 if η ≤ 3
α , as required

for Corr 4.3.3. Hence, if η ≤ 1
2α then both requirements are satisfied. Consider the

LHS of 8.8, we can bound(
ηw (1− αη)− 3σ2w2η2 (αη − 1)2

) T

∑
i=1
∥∇t∥2 ≥ ηw

1
4

T

∑
i=1
∥∇t∥2

Finally, we have
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We are done.
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Chapter 9

Subset-Norm and
Subspace-Momentum Experiments

9.1 Overview

We perform extensive experiments on LLM pre-training tasks that demonstrate SN’s
and SM’s faster convergence, for both training and validation, than Adam while sig-
nificantly reducing the optimizer’s memory footprint. Our methods, Adam with
Subset-Norm step size (AdamSN) and Subspace Momentum (AdamSNSM), achieve
Adam’s perplexity in half the training steps (and tokens) while using 80% less mem-
ory for the optimizer state. Furthermore, our algorithms incur minimal additional
hyperparameter, exhibit less sensitivity to smaller batch sizes (i.e. gradient noise),
and show better learning rate stability across model scales. Notably, we demon-
strate that AdaGrad-Subset-Norm and its Subspace-Momentum variant close the
performance gap with AdamSN/SNSM or even outperform it, further closing the
theory-practice gap. This raises a question on whether the use of exponential mov-
ing average as in Adam is necessary or optimal for obtaining strong optimization
performance for training DNNs.

9.1.1 Experimental Setup

We evaluate Subset-Norm (SN) and Subspace-Momentum (SM) on LLM pretraining
and supervised fine-tuning tasks, where memory is often a bottleneck. We compare
against several baselines, with memory estimates given for parameters of size m× n,
where we assume WLOG m ≥ n.

Baselines. We consider AdaGrad (Duchi et al., 2011), AdaGradm where we in-
corporate momentum 0.9 to AdaGrad, Adam (Kingma and Ba, 2014), and RMSProp
(Tieleman, Hinton, et al., 2012) as standard optimizers. We also consider GaLore
(Zhao et al., 2024) as a recent memory-efficient method that projects the optimizer
states into a low-rank subspace (typically rank n/4), using 2(mn/4) memory but
requiring 6 hyperparameters including subspace rank, projection update frequency,
and scaling parameters.

Our methods. We incorporate SN and SM to AdaGrad, AdaGradm, Adam and
RMSProp. SN reduces the adaptive step size (e.g. Adam’s second moment term)
memory from mn to m for a parameter of size m× n. SNSM further compresses the
momentum term of momentum methods like Adam and AdaGradm by adding SM
with SVD at the cost of additional hyperparameters (See Algorithm 14 for the full
implementation used in our experiments). RMSPropSN and AdaGradSN achieves
minimal memory footprint of just m while requiring only 2 hyperparameters.
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9.2 LLMs Pre-Training Experiments

We test our method on the task of pre-training LLaMA models (Dubey et al., 2024;
Touvron et al., 2023) on the C4 dataset (Raffel et al., 2023) with a standard setup –
details in Section 9.6.1. Table 9.1 presents the main pre-training results and Table 9.2
shows the memory footprint1 of different optimizers across a range of model sizes.

TABLE 9.1: Final perplexity (“Perpl.”) along with the number of to-
kens in parentheses of different optimizers on pretraining LLaMA
models task. Bolded methods are ours. Columns LR and HP denote
the learning rate and the number of parameters of the correspond-
ing method, respectively. We only tune for the base learning and set
other parameters as in previous implementations. The memory col-
umn shows the optimizer’s states memory consumption given a pa-

rameter of shape m× n with m ≥ n. Red LR highlights instability.

Methods Memory HP 60M (1.38B) 130M (2.62B) 350M (7.86B) 1B (13.1B)
(for m× n) Perpl. LR Perpl. LR Perpl. LR Perpl. LR

Adam 2mn 3 30.46 0.005 24.60 0.005 18.67 0.001 16.00 0.0005

AdamSN mn + m 3 29.75 0.05 22.90 0.05 17.49 0.05 14.96 0.05

AdamSNSM rn + m 5 29.74 0.05 22.43 0.05 16.91 0.05 14.05 0.05

AdaGradm 2mn 2 30.40 0.10 24.86 0.10 18.30 0.10 17.42 0.10

AdaGradmSN mn + m 2 29.73 2.00 22.58 2.00 17.14 2.00 14.48 2.00

AdaGradSNSM rn + m 4 29.81 1.00 22.43 1.00 16.99 1.00 13.96 1.00

AdaGrad mn 1 37.12 0.05 25.76 0.05 18.14 0.05 15.25 0.01

AdaGradSN m 1 29.85 2.00 24.19 1.00 17.72 1.00 14.82 1.00

RMSProp mn 2 35.51 0.001 25.94 0.001 20.01 0.001 17.03 0.001

RMSPropSN m 2 34.57 0.01 25.67 0.01 18.72 0.01 15.97 0.001

GaLore 2rn 6 34.73 0.01 25.31 0.01 18.95 0.01 16.76 0.001

Rank r / Dimension m 128/512 256/768 256/1024 512/2048

9.2.1 Discussions

Subset-Norm (SN) improves upon all existing adaptive methods while reducing
memory. Modifying Adam, AdaGradm, AdaGrad, and RMSProp with the SN adap-
tive step size not only reduces memory footprint but improves their performance
across different scales. Notably, AdaGrad and AdaGradm benefit the most from the
SN step size, providing empirical support for the theoretical benefits of SN presented
in Section 7.2.

Combining Subspace-Momentum (SM) with SN further improves performance
while saving additional memory. Perhaps surprisingly, limiting the use of momen-
tum to a subspace improves performance in SN-adaptive step sizes rather than de-
grading it. Our experiments show that SNSM, combining SN and SM, gives the best
performance for the least amount of memory across model sizes. While adding SM
introduces additional hyperparameters, Section 9.5.4 suggests that these parameters
are not too sensitive.

Furthermore, Section 9.4.2 shows that the choice of the subspace matters i.e. the
subspace spanned by a top-k singular vectors of a snapshot of a stochastic gradient

1The memory footprint is the total parameters in the optimizer states multiplied by 16 bits. See
Listing 9.1 for more details.
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TABLE 9.2: Optimizer states memory footprint (in GB for BF16 dtype)
for different LLaMA models. Our methods, AdamSN, AdamSNSM,
and RMSPropSN (RMSPSN), are modifications of Adam and RM-
SProp (RMSP) to utilize Subset-Norm (SN) and Subspace-Momentum
(SM). For GaLore and AdamSNSM, the subspace is of dimension2

d/r, where the memory accounts for additional space for storing the
projection matrices.

Opt. AdamW AdamSN RMSP GaLore AdamSNSM RMSPSN

Mem. 2d d +
√

d d 4d/r 2d/r +
√

d
√

d

60M 0.22 0.14 0.11 0.15 0.08 0.03
130M 0.50 0.30 0.25 0.29 0.16 0.05
350M 1.37 0.75 0.69 0.53 0.28 0.06
1B 4.99 2.62 2.49 1.61 0.84 0.12
3B 10.01 5.16 5.00 2.96 1.52 0.15
7B 25.10 13.04 12.55 7.01 2.73 0.49

seems to be the most beneficial for momentum as opposed to simpler choices like a
random subspace. Our current guarantee for SM, presented in Section 8.5, does not
yet explain why or when subspace momentum is useful, and theoretical understand-
ing of (EMA style) momentum in stochastic optimization is still limited (Kidambi et
al., 2018). We believe this could be related to how momentum is beneficial when
noise is low (and harmful when noise is high) and the choice of the subspace could
correlate to the amount of gradient noise or optimization landscape that harm or
benefit momentum (Wang et al., 2024; Gitman et al., 2019).

Hyperparameter robustness. In Table 9.1, the best learning rate (LR) found via
grid search is displayed and is highlighted in red as the best LR changes across
scales. This indicates potential sensitivity to tuning for each respective algorithm.
We see that Adam requires smaller LR for larger models, but using SN and SNSM
does not. AdaGradm seems less sensitive to the base LR overall.

Closing the theory-practice gap. While there is a non-trivial performance gap
between Adam and AdaGrad(m) for larger models, using the SN step size closes this
gap across scales. This shows that AdaGrad style algorithms can be competitive to
Adam when using the SN step size. Interestingly, vanilla AdaGrad seems to perform
well as model size increases. This is important because AdaGrad enjoys stronger
theoretical understanding than Adam and has one fewer parameter – β2 – to tune.

9.3 LLMs Supervised Fine-Tuning (SFT) Experiments

We further evaluate on a supervised-fine-tuning task, where we fine-tune a pre-
trained LLaMA 7B model on the UltraFeedback dataset (Cui et al., 2024) using the
chosen responses with max sequence length of 1024. We train for 1 epoch with lin-
ear decay and gradient clipping of 1. Table 9.3 contains the result with the time and
memory of one training epoch on a single A100-80GB GPU. Note SNSM’s r denotes
the dimension of SM but the optimization is full-rank.

Discussion. We observe similar improvement over Adam as in pre-training
tasks. Surprisingly, the smaller rank (for momentum) is more beneficial than the
larger rank. In contrast to LoRA, since we report peak-memory here, due to the full
parameter training of SNSM, the primary memory bottlenecks are gradients and ac-
tivations. Furthermore, we note that the primary contributor to SNSM’s slower wall
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TABLE 9.3: Last and minimum validation perplexity for SFT of
LLaMA 7B on the UltraFeedback dataset between Adam, LoRA, and
AdamSNSM for 2 different ranks. We also show the wall-clock time

and peak memory for batchsize 1 for these optimizers.

Adam LoRA (r=64) AdamSNSM (r=64) SNSM (r=32)

Last 2.622 2.632 2.584 2.580
Min. 2.401 2.410 2.392 2.390

Time (min.) 266 249 303 301
Memory (GB) 77.11 20.75 42.89 42.89

clock time is the SVD computation on large dimension. We try larger projection up-
date gaps in Table 9.6 which reduce this cost while maintaining good performance
for our methods. Furthermore, we discuss potential more efficient alternatives in
Section 8.4.1 and leave further exploration to future works.

GLUE Fine-tuning. Additional results on fine-tuning on GLUE tasks with BERT
models are in Section 9.5.1.

9.4 Ablation Studies

In this section, we present ablation studies on various parameters of SN and SM.

9.4.1 Subset-Norm’s Subset Size Ablation

While we use a simple scheme to compress the adaptive step size of linear modules
in the previous experiments, Table 7.1 suggests that there is an optimal subset size
that depends on the noise. Figure 9.1 shows performance for various subset-size se-
lection. Since the step size scales with the subset size, the optimal base LR should
be decreased as we decrease the subset size closer towards Adam. We include addi-
tional results for 130M model in Figure 9.3.

While one can use the heuristics discussed on models where linear modules
make up the vast majority, for arbitrary models with weights of d elements, we
found that a subset size of

√
d/2 is probably a reasonable choice. If more resources

are available, the subset size can also be tuned.

9.4.2 Subspace-Momentum Projection Choice Ablations

Projection types. Table 9.4 tests different choices for projection in SM discussed
in Section 8.4.1. Note that for memory storage, SVD, Random Projection via dense
Gaussian projection (Gaussian), and Approximated-SVD (Appx-SVD) need to store
the r × n projection matrix (unless we recompute at every step). The remaining
methods only need to store the indices for sampling and/or the random seed to
regenerate any random choices.

Note that the choice of the projection is important as some projections are more
computationally and memory expensive than other, although trading other quali-
ties for given the cost. Simple projections like selecting a subset of coordinates for
momentum (Subset-Momentum) are not only faster but enables simple distributed
training like FSDP unlike more complex subspace selection mechanism that requires
additional priors about the parameters (shape, low-rank, etc.) that might not always
satisfied.
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FIGURE 9.1: Subset size ablation for AdamSN on LLaMA 60M trained
for 1.38B tokens (batch size of 512 of max length 256 for 10,000 steps).
The higher the subset size, the smaller the memory footprint of the

second moment optimizer state.

TABLE 9.4: Different projections selection for Subspace-Momentum
and validation perplexity. All methods are evaluated on LLaMA 60M
with rank 128/512 and a projection update gap of 200. Time and
space rows denote time and space to compute and store the projec-

tion.

AdamSNSM’s projection SVD Approx-SVD Gaussian SRHT Top-k Random-rows OPCA Oja

Time (for m× n) O(mn2) O(mn log k + kn2) O(kn) O(max(m, n)) O(mn) O(k) O(kn) O(kn)
Space (for rank k) O(kn) O(kn) O(kn) O(k) O(k) O(k) O(kn) O(kn)

Validation Perplexity 29.74 31.51 42.48 33.33 31.42 33.17 29.63 30.69

Online k-PCA and Streaming k-PCA for Up-to-date Subspace. Computing sub-
space from stochastic gradient snapshots can be noisy. Recently, (Liang et al., 2024)
proposes a formulation of online-PCA to handle the problem of staled top-k compo-
nents as the stochastic gradients evolve. We test this algorithm in the OPCA column.
Another natural algorithm to ensure the top-k components stay up-to-date is Oja’s
algorithm for streaming k-PCA (Huang et al., 2021). We also test this algorithm in Ta-
ble 9.4. While we can maintain up to date projection using these schemes, more fre-
quent updates suffer from the same issue of transferring optimization statistics from
one subspace to another. We only test for not resetting the statistics in this setting
and leave additional investigation for future works. Furthermore, these schemes are
more expensive computationally due to additional computation requirement at ev-
ery step. OPCA further uses Adam for inner optimization which incurs additional
memory.
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9.4.3 Step Sizes and Momentum Choices Full Ablations

We investigate various combinations of momentum and adaptive step size approaches
in Table 9.5. For adaptive methods, we compare EMA, which uses exponential mov-
ing average to accumulate the second moment (v2

t = βv2
t−1 + (1− β)g2

t ), with Ada-
Grad’s cumulative accumulation approach (b2

t = b2
t−1 + g2

t ). Methods with the SN
suffix utilize subset norm for parameter grouping, contrasting with per-coordinate
approaches that are standard. While EMA momentum follows the standard momen-
tum implementation, subspace momentum employs a reduced rank approximation
with rank 128 for this model size.

TABLE 9.5: Different combinations of momentum (columns) and
adaptive step-size (rows) and the effect of the learning rate sched-
ule on each combination (cosine learning rate decay schedule with
warmup “coslr” or constant learning rate “lr.”). Memory footprint for
each adaptive step size and/or momentum are shown. Green and red
highlight runs with perplexity below 30 and above 50 respectively.

Final eval perplexity (lr) No momentum EMA momentum Subspace momentum
LLaMA 60M for 1.31B tokens Mem = 0 Mem = m · n Mem = max(m, n) · rank

SGD SGDm SGD+SM
No Adaptive Step-size 86.60 (coslr=1e-3) 55.76 (coslr=1e-3) 89.97 (coslr=1e-3)
Mem = 0 100.04 (lr=1.0) 56.07 (lr=1.0) 213.21 (lr=5e-4)

RMSProp Adam AdamSM
EMA Coordinate 35.01 (coslr=1e-3) 30.46 (coslr=5e-3) 32.34 (coslr=1e-3)
Mem = m · n 36.46 (lr=5e-4) 33.47 (lr=1e-2) 32.25 (lr=5e-4)

RMSPropSN AdamSN AdamSNSM
EMA Subset-Norm 34.86 (coslr=1e-2) 29.75 (coslr=5e-2) 29.74 (coslr=5e-2)
Mem = max(m, n) 34.57 (lr=1e-2) 33.69 (lr=1e-2) 32.49 (lr=1e-2)

AdaGrad AdaGradm AdaGradSM
AdaGrad Coordinate 37.12 (coslr=5e-3) 31.48 (coslr=5e-2) 30.99 (coslr=5e-2)
Mem = m · n 46.47 (lr=5e-4) 43.99 (lr=1e-2) 41.32 (lr=5e-4)

AdaGradSN AdaGradSNm AdaGradSNSM
AdaGrad Subset-Norm 33.19 (coslr=5e-3) 29.73 (coslr=5e-3) 29.81 (coslr=5e-3)
Mem = max(m, n) 41.23 (lr=0.1) 44.98 (lr=0.1) 40.11 (lr=0.1)

Discussions. From Table 9.5, Subset norm (SN) step sizes consistently outperform
coordinate-wise implementations while requiring less memory. Adaptivity proves
crucial for optimization effectiveness, where the first row without adaptivity per-
form consistently poorly. The addition of momentum is beneficial in all configura-
tions while SM is more beneficial for adaptive step sizes. The impact of learning rate
scheduling is also evident across configurations, with cosine decay consistently out-
performing constant learning rates. Notably, we observe varying degrees of learning
rate sensitivity: adaptive methods demonstrate greater robustness to learning rate
selection, while non-adaptive methods require more precise tuning.

9.4.4 Larger Projection Update Gaps

Frequently updating the projection map using SVD can be expensive, especially for
larger models. Furthermore, updating the projection every 200 steps can be arbi-
trary. In Table 9.6, we examine more structured schedules: (1) updating every 5%
of the total training steps (corresponding to 200/10K steps for the 60M model) and
(2) only using a fixed subspace at the start. Compared to Table, 9.1 where a fixed
gap of 200 is used across scales, we see SNSM’s performance stay relatively similar
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TABLE 9.6: Effects of less frequent subspace update schedule (gap).
Compared to Table 9.1 where the gap is fixed to 200 across all scales.

Model Size 60M 130M 350M 1B

Gap/Steps (5%) 200/10K 1K/20K 3K/60K 5K/100K

AdamSNSM 29.84 22.71 18.43 15.28
AdaGradSNSM 30.28 22.76 17.02 13.90
GaLore 36.69 29.37 21.27 19.14

Fixed Subspace 10K/10K 20K/20K 60K/60K 100K/100K

AdamSNSM 30.65 23.65 18.94 15.16
AdaGradSNSM 31.43 24.85 18.04 14.62
GaLore 37.95 26.63 21.49 27.11

when we increase the update gap to 5% of the total training steps, whereas GaLore’s
performance suffers more.

TABLE 9.7: Fixed Subspace Choices on LLaMA 60M. We examine Ga-
Lore and SNSM with top-k singular vectors projections (SVD) and

random subspaces (Random) using dense gaussian projections.

GaloreSVD GaloreRandom SNSM+SVD SNSM+Random

Perplexity 37.95 38.23 30.65 40.15

Interestingly, for fixed subspace (100% gap), GaLore still achieves decent perfor-
mance even though the optimization only happens in a small subspace up until the
1B model, where the training stops improving after 50K/100K steps. In Table 9.7, we
see that a random subspace seems to work decently well too. This suggests that a
majority of progress can be made in a small subspace in smaller models. In contrast,
this is not the same for restricting momentum to a subspace. Furthermore, we notice
that there are training loss spikes at the times when we switch subspace for Ga-
Lore that impacts training with 5% gap, most likely due to incompatible optimizers’
statistics between subspaces. This could explain why GaLore’s 100% gap performs
similarly or even better than 5% gap for certain run. Finally, we note that AdaGrad-
SNSM performs the best here with the larger gaps as the dimension increases.

9.5 Additional Experiments and Ablation Studies

9.5.1 Fine-tuning on GLUE Tasks

Table 9.8 presents results for fine-tuning on GLUE dataset for various methods. The
SN step size maintains good performance while reducing the memory footprint.

9.5.2 AdaGrad, AdaGrad-Norm, and AdaGrad-Subset-Norm

We examine the subset-norm step size for AdaGrad in Figure 9.2. We again see that
subset-norm is slightly better than the full coordinate version while using a lot less
memory. This is consistent with our observations for Adam and RMSProp when we
replace the standard coordinate-wise step size with the subset-norm adaptive step
size.
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TABLE 9.8: Performance metrics across GLUE tasks. QQP, RTE,
SST-2, MRPC, STSB, QNLI, and MNLI use accuracy as the metric,
while CoLA uses the Matthews correlation coefficient. The best and
runner-up results for each task and the average score are highlighted.

Method QQP RTE SST2 MRPC STSB QNLI MNLI COLA Avg

Adam 92.0 77.9 94.9 89.2 90.5 93.0 87.6 65.4 86.3
GaLore (r = 4) 90.9 79.4 95.2 88.7 90.8 92.4 86.9 61.9 85.8
RMSProp 91.9 79.4 95.2 91.4 90.3 92.8 87.6 65.1 86.7

RMSPropSN 91.9 80.1 95.1 90.0 90.7 93.1 87.5 63.8 86.5
AdamSN 91.2 74.4 94.5 89.5 90.4 92.0 86.7 64.4 85.4
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FIGURE 9.2: Pretraining LLaMA 60M on the C4 dataset for AdaGrad
variants. Memory consumption estimate as a function of parameter

count d is shown in the legend.

9.5.3 Additional Subset-Size Experiments for 130M model

We provide additional subset-size experiments similar to the ones in Section 9.4.1
for LLaMA 130M in Figure 9.3.

9.5.4 Subspace-Momentum Rank and Gap Ablations

Rank and gap ablations. We examine the impact of varying rank and update gap
of subspace momentum, similarly to (Zhao et al., 2024), in Figure 9.4. There, we see
that the higher the rank, the better the results. For the update gap, it seems like there
is an optimal choice. However, due to the SVD computation, a larger gap will be
cheaper than a more frequent gap.

9.5.5 Gradient Clipping

Gradient clipping is standard in training LLMs for many open source models like
LLaMA, DeepSeek, OPT, etc. (DeepSeek-AI et al., 2024; Touvron et al., 2023; Work-
shop et al., 2022; Zhang et al., 2022; Chowdhery et al., 2023; Ding et al., 2023). Clip-
ping has a strong connection to stochastic gradient noise being heavy-tailed (Zhang
et al., 2019) and many theoretical results have been shown to suggest some form of
clipping is beneficial when the noise could follow a heavy-tail distribution(Cutkosky
and Mehta, 2021; Gorbunov et al., 2020; Li and Liu, 2022; Nguyen et al., 2023b;
Nguyen et al., 2023a). We present the results with clipping equal to 1.0 for each
method in Table 9.9.
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FIGURE 9.3: Subset size ablation for AdamSN on LLaMA 130M
trained for 2.62B tokens (batch size of 512 of max length 256 for 20,000
steps). The higher the subset size, the smaller the memory footprint

of the second moment optimizer state.

Method 60M (no clipping) 60M (with clipping) 130M (no clipping) 130M (with clipping)

Adam 30.58 30.46 25.07 25.07
AdamSN 30.06 29.75 23.54 22.89
GaLore 34.91 34.73 25.43 25.31

TABLE 9.9: Pre-training LLMs ablation experiments for gradient clip-
ping. We compare validation perplexity between LLaMA 60M and
130M with and without clipping. We use the same hyperparameters

as in Section 9.6.2 but just add clipping.

In Table 9.9, we see that gradient clipping indeed helps most of the methods
achieve slightly better perplexity. In our experiments, we notice that adding some
form of gradient clipping produces more stable training.

9.5.6 Batch Sizes and Random Seeds

Fixed number of steps. We measure the impact of different batch sizes on pre-
training LLaMA 60M for 10,000 steps in Table 9.10.2 We use the same configuration
as in other experiments. Typically, smaller batch sizes require smaller learning rates,
but curiously, AdamSNSM seems to be stable with the choice of learning rates. Even
more interestingly, AdamSNSM’s final performance seems to be affected less by the
smaller batch size as opposed to other methods, especially GaLore.

Fixed data quantity. In the previous section, we compare the performances on dif-
ferent batch sizes fixing the same number of steps. In this section, we fix the amount
of data to 1.3B tokens for pre-training LLaMA 60M. Hence, adjusting the batch size

2This reduces the amount of total tokens trained. However, we only compare optimizers against
one another. To compare the same optimizer against different batch sizes, one should train for the
same amount of tokens.
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FIGURE 9.4: Rank and gap ablation for AdamSNSM on LLaMA 60M
for 10,000 steps. The lower the rank, the less memory consumption
used by the momentum state. The higher the projection gap, the less

SVD computation is performed which is cheaper.

TABLE 9.10: Batch size ablation for various optimizers along with
optimal learning rate.

Batch size
Adam GaLore AdamSN AdamSNSM

Perpl. LR Perpl. LR Perpl. LR Perpl. LR

1024 27.94 0.005 32.75 0.01 27.68 0.05 28.02 0.05
512 30.46 0.005 34.73 0.01 29.75 0.05 29.74 0.05
256 36.65 0.001 44.71 0.001 37.03 0.001 32.82 0.05
128 41.72 0.001 49.75 0.001 42.04 0.001 36.82 0.05

would also adjust the number of steps. Table 9.11 contains the result where SNSM
shows consistently better performance than Adam across different batch sizes.

Random seeds. Throughout our experiments, we fix the random seed for all runs
within a same table. In Table 9.11, we investigate the effects of random seeds by run-
ning each batch size on 3 random seeds and report the mean and standard deviation.
We see that SNSM has better variance than Adam for many batch sizes overall. We
also examine the random variation on the 130M model in Table 9.12.

TABLE 9.11: Mean and standard deviation (in parentheses) evalu-
ation perplexities of Adam and AdamSNSM optimizers when pre-
training LLaMA 60M for 1.3B tokens over 3 random seeds. SNSM
rank = 128 and gap = 200. Learning rates were tuned over a grid for

each batch size.

Batch size 1024 512 256 128 64 32 16 8 4

Adam 31.80 (1.87) 30.46 (0.29) 32.11 (1.32) 34.57 (0.16) 36.34 (0.16) 38.91 (0.12) 43.12 (0.26) 48.88 (0.17) 57.28 (0.80)
AdamwSN 30.11 (0.15) 29.81 (0.12) 30.32 (0.07) 31.30 (0.02) 32.72 (0.11) 35.38 (0.11) 40.46 (0.97) 45.81 (0.11) 51.01 (0.25)
AdamSNSM 31.39 (0.17) 29.93 (0.07) 30.08 (0.19) 30.57 (0.08) 32.35 (0.14) 34.51 (0.14) 37.05 (0.20) 39.39 (0.02) 44.27 (0.10)
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Adam AdamSN Adagrad AdaGradSN

Mean 24.69 22.98 25.95 24.57
Stdev 0.07 0.07 0.16 0.37

TABLE 9.12: Mean and standard deviation across 3 runs for different
optimizers on pretraining LLaMA 130M task.

9.6 Experimental and Implementation Details

In this section, we provide hyperparameters details, implementation details (pseu-
docode), and other practical considerations.

9.6.1 LLM Pre-training Experiment Setup

All of our pre-training experiments are conducted on NVIDIA RTX4090/3090 GPUs.
We follow the experimental setup as in GaLore (Zhao et al., 2024), where we use a
batch size of 512 and max sequence length of 256 for all models. We employ a stan-
dard training setup as in the LLaMA paper (Dubey et al., 2024; Touvron et al., 2023)
with cosine decay and linear warmup as well as gradient clipping for all methods.3

For all our experiments, we use the default (β1, β2) = (0.9, 0.999) and only tune for
the base learning rate within a grid4 of

{0.5, 0.1, 0.05, 0.01, 0.005, 0.001} .

We train for 1.38B, 2.62B, 7.86B, and 13.1B tokens for models of sizes 60M, 130M,
350M, and 1B parameters, respectively, following (Zhao et al., 2024) and matches
roughly the scaling laws in (Hoffmann et al., 2022). Additional details are in Section
9.6.2.

For GaLore, we use the same hyperparameters as in (Zhao et al., 2024), where
we use rank 128/512, 256/768, 256/1024, and 512/2048 for the 60M, 130M, 350M,
and 1B models, respectively (Table 2 of (Zhao et al., 2024)).5 For AdamSNSM, we
use the same ranks and projection update gap (of 200) as GaLore for all models.6

However, we do not tune for an additional scaling parameter unlike GaLore, and
we compresses the LM head (final linear layer) with SN and SM also.7

9.6.2 Hyperparameter Details

In Table 9.1, we run all experiments on BF16 format, weight decay of 0, gradient
clipping of 1.0, cosine learning rate decay to 10% of the max learning rate with 10%
linear warmup steps, and batch size of 512 (similarly to (Zhao et al., 2024) and (Tou-
vron et al., 2023; Dubey et al., 2024)). We only tune for the learning rate across a grid

3Note that these addition improve the performance for all baselines. See Section 9.5.5.
4Except AdaGradSNm where we find higher learning rates in {0.5, 1, 2, 5} to be better. We tune the

lr on the 60M model and use the same learning rate for the larger model, where the base learning rate
is only reduced if the method fails to converge.

5Note that our reproduced results for GaLore and baselines are similar to (Zhao et al., 2024).
6Note that a smaller gap is more expensive than a larger gap. Our experiments below show that

we can increase the projection update gap without much performance loss. If data is not limited, one
could use a larger gap to speed up training. However, if data is limited, then a smaller gap to converge
in fewer tokens is potentially more desirable.

7Existing methods typically do not compress the embedding layer and final LM head, while our
methods seem robust to this choice. Compressing these layers save additional memory.
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of {0.1, 0.05, 0.01, 0.005, 0.001} (except for AdaGrad with momentum where larger
learning rates are better). We train for 10,000 steps and 20,000 steps for the 60M and
130M models, respectively.

9.6.3 Adam-Subset-Norm Implementation

Algorithm 12 presents the pseudocode for Adam-Subset-Norm as mentioned in Sec-
tion 7.5 where we partition the coordinates (for each parameter) into subsets of equal
sizes.

Algorithm 12 Adam-Subset-Norm with a simple partitioning scheme

Require: Learning rate η, EMA parameters β1 and β2, ϵ > 0, optional weight decay
wd ≥ 0

1: for each p ∈ Rm×n in params do
2: grad← p.grad
3: r ← 0 if m ≥ n else 1
4: k← p.shape[r] ▷ where k = m if r = 0 else k = n
5: gradN← grad.norm(dim=1− r) ∈ Rk ▷ subset norm
6: m← β1m + (1− β1) · grad ∈ Rm×n

7: v← β2v + (1− β2) · gradN2 ∈ Rk ▷ omitting bias correction terms
8: p← p + η m√

v+ϵ
▷ broadcast division

9: p← p− η · wd ▷ weight decay
10: end for

9.6.4 Generic Subset-Norm Adaptive Step Size Implementation

The heuristic implementation in Section 9.6.3 is simple and does not require any
tuning. However, to modify existing algorithms to work with arbitrary subsets, one
could utilize reshape as in Algorithm 13 as an example.

Algorithm 13 Generic Subset-Norm Adaptive Step Size Update Rule (PyTorch-y no-
tation)

Require: Parameter P ∈ Rd, step size η > 0, β, ϵ > 0, and partition size k such that
k divides d.

1: R← (∇P).reshape(d/k, k) ▷ Reshape gradient into shape d
k × k

2: V ← βV + (1− β) · ((R**2).sum(dim=1)) ∈ Rd/k ▷ Update state V via subset
norm reduction on dim 1

3: U ← R√
V+ϵ
∈ R

d
k×k ▷ Broadcast addition and division for update step

4: P← P− η ·U.view(d) ▷ Reshape U back to Rd and update P

9.6.5 AdamSNSM Implementation Details

Algorithm 14 provides the pseudocode and implementation details for the version
of AdamSNSM with SVD subspace momentum and heuristics subset-norm (as de-
scribed in Section 7.5) used in our experiments.
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Algorithm 14 AdamSNSM with Subspace Momentum via top-k singular vectors
from SVD used in our experiments. Note that we only apply the compression to
linear modules while performing vanilla Adam on the rest of the modules (all 1D
params).

Require: Learning rate η, rank k, update gap G, momentum parameters β1, β2 ∈
(0, 1), and stability parameter ϵ

1: for t = 1, . . . , T do
2: Obtain stochastic gradient gt ∈ Rm×n ▷ WLOG, we assume m ≥ n
3: if t mod G = 0 then
4: U, S, V = SVD(gt) ▷ Compute singular value decomposition
5: P = U[:, : k] ∈ Rm×k ▷ Extract top k singular vectors
6: end if
7: m = β1m + (1− β1)PTgt ∈ Rk×n ▷ Update subspace momentum
8: r = gt − PPTgt ▷ Compute orthogonal SGD component
9: s = sum(gt, dim = 1) ∈ Rn ▷ Sum all columns for subset-norm heuristic

10: v = β2v + (1− β2)s2 ∈ Rn ▷ EMA of subset-norm
11: xt = xt−1 + η Pm+r√

v+ϵ
▷ Update with subspace momentum and subset-norm

step size
12: end for

9.6.6 Measuring Memory Footprint of Optimizers

In PyTorch, we can obtain the number of parameters in optimizer states using the
code in Listing 9.1.

9.6.7 Peak memory measurement during training for different optimizers

We measure peak memory consumption directly via running nvidia-smi in Figure
9.5 while training as oppose to controlled measurement as in Table 9.2. Note that
these peak measurements incur additional memory from gradient computation and
algorithms’ overhead.
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1 def get_optimizer_state_size(optimizer) -> Tuple[int , Dict[str , int]]:
2 total_state_size = 0
3 state_size_breakdown = {}
4 for group in optimizer.param_groups:
5 for p in group[’params ’]:
6 state = optimizer.state[p]
7 for state_key , state_value in state.items ():
8 if torch.is_tensor(state_value):
9 if state_value.numel () == 1:

10 # we do not count singleton
11 continue
12 total_state_size += state_value.numel()
13 if state_key not in state_size_breakdown:
14 state_size_breakdown[state_key] = 0
15 state_size_breakdown[state_key] += state_value.

numel()
16 return total_state_size , state_size_breakdown

LISTING 9.1: PyTorch function to calculate optimizer state size
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Conclusion and Future Directions
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Chapter 10

Conclusion and Future Directions

All things shall pass.
– Traditional Proverb

10.1 Conclusion

This thesis has advanced the theory and practice of stochastic optimization for large-
scale deep learning. We established robust high-probability convergence guarantees
under relaxed assumptions, strengthening the theoretical underpinnings of widely
used optimizers like SGD, SMD, and AdaGrad variants. These insights deepen our
understanding of optimization dynamics and pave the way for more reliable, effi-
cient training algorithms. We then introduced Subset Norm (SN) and Subspace Mo-
mentum (SM), two novel techniques that boost the memory and sample efficiency
of adaptive optimizers. By compressing optimizer states without sacrificing conver-
gence, these methods cut the training cost of LLaMA-1B in half (in tokens) while
reducing optimizer memory use by over 80%. Such gains promise to make large-
scale training more accessible and cost-effective for academia and industry alike.
Though challenges persist in optimizing ever-complex architectures and dynamics,
our work offers a step toward more efficient, scalable algorithms. As deep learning
scales up in model size and data demands, optimization efficiency will remain key
to progress. We hope the theoretical advances and practical innovations here inspire
further research and real-world impact in large-scale AI systems.

10.2 Future Directions

10.2.1 Theoretical Directions

Convergence of adaptive methods under heavy-tailed noise. While optimal high-
probability convergence rates have been established for clipped-SMD and clipped-
SGD under heavy-tailed noise, understanding the conditions for the convergence of
adaptive methods like AdaGrad and Adam under heavy-tailed noise is crucial for
bridging the theory-practice gap. Theoretical insights into practical algorithms un-
der heavy-tailed noise can inform stability, generalization, and the design of more
effective and robust algorithms for DNNs under more pragmatic assumptions. Re-
cent progress in proving the convergence of normalized-SGD without gradient clip-
ping under heavy-tailed noise (Hübler et al., 2024) shows promising potential for
establishing convergence guarantees for adaptive methods in this relevant setting.

Theoretical benefits of momentum in stochastic non-convex optimization. While
momentum accelerates optimization in deterministic smooth convex settings, its
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role in stochastic non-convex optimization – such as the training of DNNs – re-
mains not entirely understood. In contrast, the theoretical understanding of adap-
tive step sizes in such settings is more advanced. Although many works on variance-
reduction algorithms show theoretical acceleration for non-convex stochastic op-
timization through various momentum schemes (albeit under additional assump-
tions), these methods are often complex, computationally expensive, and/or less
effective in real-world tasks. A deeper understanding of existing practical momen-
tum and acceleration schemes could provide valuable insights into the convergence
of these algorithms in the heavy-tailed noise setting (Hübler et al., 2024) or in the
development of effective learning rate schedules under unknown time-horizon (De-
fazio et al., 2024).

10.2.2 Experimental Directions

Subspace optimization for general architectures and domains. Current subspace
optimization implementations, such as GaLore and our Subspace-Momentum, are
implicitly limited to linear modules and transformer architectures, i.e., rank-2 ten-
sors, due to their reliance on the singular value decomposition (SVD) for finding use-
ful subspaces. Effectively extending these methods to higher-order tensor modules –
such as convolutional weights in vision architectures or higher-order tensors in neu-
ral operators – is highly desirable due to their broad applicability in a wide range
of important domains. Successful generalization efforts would necessitate empirical
and theoretical investigation into tensor decomposition schemes and the subspaces’
effects on the optimization’s preconditioning and interactions with gradient noise.

Deeper understanding of subspace optimization. Ablation studies indicate that
the choice of subspace – e.g., top-k singular vectors versus random subspaces – has
important effects on the optimization performance. Consequently, further explo-
ration of effective subspaces could enhance practical aspects while providing in-
sights into understanding subspace optimization dynamics in non-convex stochas-
tic optimization problems. Subspace-Momentum, in particular, offers an analyti-
cal framework for restricting momentum to a controlled subspace while preserving
standard gradient descent in the complement, enabling more fine-grained analysis.
Recent progress in full-preconditioner algorithms like the Shampoo optimizer could
provide useful hints in this investigation. Finally, an equally interesting question is
whether adversarial subspaces can be identified where the use of momentum nega-
tively impacts optimization. Addressing these questions could lead to the principled
design of more robust and effective algorithms for modern AI systems.

Noise robustness and applications to various domains. The potential of Subset-
Norm to stabilize training by effectively managing gradient noise warrants further
exploration and broader application across various domains. For example, Rein-
forcement Learning offers promising opportunities for Subset-Norm’s adaptive step
size, particularly when gradient noise is exacerbated by sampling-based reward es-
timations. A closely related area is generative modeling through denoising diffu-
sion probabilistic models (DDPMs), where substantial efforts have been dedicated
to mitigating gradient noise to achieve more stable optimization. Similarly, although
generative adversarial methods have been established for some time, their notori-
ous instability during training presents an opportunity to investigate noise-robust
algorithms. Finally, noise plays a critical role in several important applications like
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robustness and privacy. Effectively managing noise during training could unlock
new possibilities in these fields and beyond.

10.3 Final Remark

Foundation models (e.g., LLMs) are to the AI revolution what the steam engine was
to the Industrial Revolution – except in the cognitive space rather than the physical
one. Just as cars revolutionized travel by making it faster and more efficient, foun-
dation models serve as cognitive engines that accelerate how we traverse across the
information landscape. As we refine these engines, we won’t just get to our destina-
tions faster—we’ll unlock entirely new frontiers, much like how airplanes enabled
global travel and rockets took us beyond Earth.

However, a car is more than just an engine. To truly understand this new technol-
ogy that is AI, we must build the full system – transmissions, wheels, suspension,
and safety systems – to ensure reliability, efficiency, and control. The road ahead
requires engineering not just more powerful models (engines) but also robust in-
frastructure, ethical frameworks, and thoughtful applications.

Hence today, AGI can then be thought of as teleportation. It’s certainly a dream,
but we should probably focus on building better cars, faster planes, and more reli-
able systems first. And most importantly, we need skilled drivers to navigate wisely,
taking us to meaningful and beautiful destinations. Then we can be explorers and
perhaps take a leisure road-trip across the beautiful landscape of the mind.
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